The endothelial-to-hematopoietic transition (EHT) process during definitive hematopoiesis is highly conserved in vertebrates. Stage-specific expression of transposable elements (TEs) has been detected during zebrafish EHT and may promote hematopoietic stem cell (HSC) formation by activating inflammatory signaling. However, little is known about how TEs contribute to the EHT process in human and mouse. We reconstructed the single-cell EHT trajectories of human and mouse and resolved the dynamic expression patterns of TEs during EHT. Most TEs presented a transient co-upregulation pattern along the conserved EHT trajectories, coinciding with the temporal relaxation of epigenetic silencing systems. TE products can be sensed by multiple pattern recognition receptors, triggering inflammatory signaling to facilitate HSC emergence. Interestingly, we observed that hypoxia-related signals were enriched in cells with higher TE expression. Furthermore, we constructed the hematopoietic cis-regulatory network of accessible TEs and identified potential TE-derived enhancers that may boost the expression of specific EHT marker genes. Our study provides a systematic vision of how TEs are dynamically controlled to promote the hematopoietic fate decisions through transcriptional and cis-regulatory networks, and pre-train the immunity of nascent HSCs.
BMC Biology

Human aging is a natural and inevitable biological process that leads to an increased risk of aging-related diseases. Developing anti-aging therapies for aging-related diseases requires a comprehensive understanding of the mechanisms and effects of aging and longevity from a multi-modal and multi-faceted perspective. However, most of the relevant knowledge is scattered in the biomedical literature, the volume of which reached 36 million in PubMed. Here, we presented HALD, a text mining-based human aging and longevity dataset of the biomedical knowledge graph from all published literature related to human aging and longevity in PubMed. HALD integrated multiple state-of-the-art natural language processing (NLP) techniques to improve the accuracy and coverage of the knowledge graph for precision gerontology and geroscience analyses. Up to September 2023, HALD had contained 12,227 entities in 10 types (gene, RNA, protein, carbohydrate, lipid, peptide, pharmaceutical preparations, toxin, mutation, and disease), 115,522 relations, 1,855 aging biomarkers, and 525 longevity biomarkers from 339,918 biomedical articles in PubMed. HALD is available at https://bis.zju.edu.cn/hald.
Scientific Data

Quantifying the similarity of human diseases provides guiding insights to the discovery of micro-scope mechanisms from a macro scale. Previous work demonstrated that better performance can be gained by integrating multiview data sources or applying machine learning techniques. However, designing an efficient framework to extract and incorporate information from different biological data using deep learning models remains unexplored. We present CoGO, a Contrastive learning framework to predict disease similarity based on Gene network and Ontology structure, which incorporates the gene interaction network and gene ontology (GO) domain knowledge using graph deep learning models. First, graph deep learning models are applied to encode the features of genes and GO terms from separate graph structure data. Next, gene and GO features are projected to a common embedding space via a nonlinear projection. Then cross-view contrastive loss is applied to maximize the agreement of corresponding gene-GO associations and lead to meaningful gene representation. Finally, CoGO infers the similarity between diseases by the cosine similarity of disease representation vectors derived from related gene embedding. In our experiments, CoGO outperforms the most competitive baseline method on both AUROC and AUPRC, especially improves 19.57% in AUPRC (0.7733). The prediction results are significantly comparable with other disease similarity studies and thus highly credible. Furthermore, we conduct a detailed case study of top similar disease pairs which is demonstrated by other studies. Empirical results show that CoGO achieves powerful performance in disease similarity problem.
Bioinformatics

Recent Talks

  • Analyzing the genes related to Alzheimer’s disease via a nework and pathway-based approach
    Zhejiang University-Bielefeld University Joint Symposium - 2019
  • Bielefeld University & CeBiTec
  • Bielefeld, Germany

Recent Posters

  • Network and pathway based analyses of genes associated with Parkinson's disease
    The Seventh National Conference on Bioinformatics & Systems Biology of China and International Workshop on Advanced Bioinformatics & Precision Medicine, 2016
    DOI PDF
  • University of Electronic Science and Technology of China
  • Chengdu, China
  • Common characteristics of Alzheimer's disease and Parkinson's disease based on AlzGene and PDGene databases
    The Sixth National Conference on Bioinformatics & Systems Biology of China and International Workshop on Advanced Bioinformatics, 2014
    DOI PDF
  • Southeast University
  • Nanjing, China

Projects

Working

I was ever working as a research assistant in Prof. Ju Wang's Bioinformatics Lab at Tianjin Medical University from July 2016 to May 2017.

Contact