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Abstract

Motivation: Quantifying the similarity of human diseases provides guiding insights to the discovery of micro-scope
mechanisms from a macro scale. Previous work demonstrated that better performance can be gained by integrating
multiview data sources or applying machine learning techniques. However, designing an efficient framework to
extract and incorporate information from different biological data using deep learning models remains unexplored.

Results: We present CoGO, a Contrastive learning framework to predict disease similarity based on Gene network
and Ontology structure, which incorporates the gene interaction network and gene ontology (GO) domain
knowledge using graph deep learning models. First, graph deep learning models are applied to encode the features
of genes and GO terms from separate graph structure data. Next, gene and GO features are projected to a common
embedding space via a nonlinear projection. Then cross-view contrastive loss is applied to maximize the agreement
of corresponding gene-GO associations and lead to meaningful gene representation. Finally, CoGO infers the
similarity between diseases by the cosine similarity of disease representation vectors derived from related gene
embedding. In our experiments, CoGO outperforms the most competitive baseline method on both AUROC and
AUPRC, especially improves 19.57% in AUPRC (0.7733). The prediction results are significantly comparable with
other disease similarity studies and thus highly credible. Furthermore, we conduct a detailed case study of top
similar disease pairs which is demonstrated by other studies. Empirical results show that CoGO achieves powerful
performance in disease similarity problem.

Availability and implementation: https://github.com/yhchen1123/CoGO.

Contact: mchen@zju.edu.cn

1 Introduction

Uncovering the associations among human diseases draws great at-
tention from researchers. The similarity between different diseases
can be measured within different biological scopes. It can be
extended to address numerous questions at the forefront of network
medicine (Menche et al., 2015), from interpreting genome-wide as-
sociation study data to drug target identification and repurposing.
Current studies have confirmed that similar diseases tend to be
caused by similar molecules (Cáceres and Paccanaro, 2019; Hu
et al., 2017), share similar biomarkers (Franke et al., 2006; Tang
et al., 2018), and can be diagnosed by similar symptoms or be cured
by similar drugs (Csermely et al., 2013; Luo et al., 2016). Therefore,
it has attracted increasing attention to design accurate and efficient

algorithms to make full use of the big data and prior biological
knowledge in existing researches and databases.

Disease similarity can be calculated by shared molecular features
(e.g. disease-associated genes, proteins, noncoding RNAs), pheno-
types or semantic descriptions. Molecule-based methods utilize the
qualitative associations between molecules and diseases from related
data sources (Mathur and Dinakarpandian, 2012; Suthram et al.,
2010). Phenotype-based methods are analogous to that of the previ-
ously stated molecular-based methods. Instead, they use phenotype
data to measure diseases (Freudenberg and Propping, 2002).
Semantic-based approaches are based on the graph structure of
disease-related ontologies (Wang et al., 2007).

Apart from treating disease-related molecules separately, graph
structure data, such as gene regulatory network, protein–protein
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interaction network (PPIN) and pathways, is also used for disease
similarity methods. Cheng et al. (2014) designed SemFunSim to cal-
culate similarity by integrating the functional interactions of genes
from HumanNet Kim (2022) and the relationship among diseases
from disease ontology graph. Hamaneh and Yu (2015) used random
walk to explore nontrivial similarity between diseases with known
gene associations. Ni et al. (2020) followed disease module theory
and measured associations between diseases by using disease-gene
association data and PPIN. Oerton et al. (2019) integrated six types
of biological data to construct disease networks and predicted dis-
ease relationships through similarity fusion. NETSIM2 (Peng et al.,
2018) considered both gene network structure and gene ontology
(GO) graph structure to decrease the noise information.

However, the predictive power of the current feature extractors
from raw data or graphs can be impeded because of human bias. In
order to circumvent this issue, the graph deep learning methods
allow for leveraging graph structure data about diseases to refine
genetic and phenotypic disease relationships. Han et al. (2019) used
graph convolutional networks (GCN) and matrix factorization to
capture disease-gene association. Wang et al. (2020) applied GCN
to predict circRNA-disease associations. Deep-DRM (Zhao et al.,
2021) used graph deep learning approaches to encode structure fea-
tures of disease network and metabolite network and predicted
disease-related metabolite. Li et al. (2021) integrated gene associ-
ation network and GO graph to reconstruct gene network and uti-
lized graph representation learning model to calculate disease
similarity.

In parallel, contrastive learning is a self-supervised framework
that learns by comparison which can be performed between positive
pairs of ‘similar’ inputs and negative pairs of ‘dissimilar’ inputs.
MoCo (He et al., 2019) and SimCLR (Chen et al., 2020) show that
it has largely closed the gap between unsupervised and supervised
representation learning in vision tasks. This framework has been
extended to solve problems in bioinformatics. The scNAME (Wan
et al., 2022) combines contrastive paradigm into their method to
learn underlying feature representation of scRNA-seq data for cell
clustering. SMILE Xu (2022) adopts contrastive learning to perform
single-cell omics data integration.

In summary, the current trends in disease researches are to in-
corporate the ontology-based background knowledge and disease-
related molecular data, or construct disease molecular network and
use graph deep learning model to extract the latent structure of raw
data. However, both avenues of research have encountered their
limitations: first, it can be inefficient and biased to use nonparamet-
ric models to process disease-related data. Second, graph deep learn-
ing model cannot be extended to multiview networks directly. To
overcome these obstacles, we aim to develop an effective method for
computation of gene and disease embedding in biological networks
by integrating two key insights: (i) Graph deep learning models are
potentially effective in computing powerful node embedding for bio-
logical networks. (ii) Using a contrastive learning framework to
combine biological data and prior knowledge gains better perform-
ance in downstream tasks without introducing human bias.

In this study, we present CoGO (Contrastive learning framework
to predict disease similarity based on Gene network and Ontology
structure), a contrastive learning model which uses an intra-view
GCN model to learn node embedding and applies cross-view model
to jointly encode both the gene network and GO graph. The cross-
view contrastive loss can make the genes and their corresponding
GO annotations in similar positions in the embedding space.

Furthermore, we compare and evaluate the performance of our
method against other disease similarity methods on the benchmark
set. Experimental results demonstrate our method outperforms
others to discover potential similar diseases. In addition, our method
can identify corresponding similar diseases that do not appear in the
benchmark but have been confirmed by publications.

2 Materials and methods

In this section, we first describe the data used in our model. Then
we will introduce the overview of CoGO and its implementation

and application as shown in Figure 1. During the training stage,
it joint learns structure features from gene network and GO
knowledge graph using two model components: intra-view model
and cross-view model. In the inference stage, we can only use part of
the intra-view model to calculate the gene representations and get
the discriminative disease representations.

2.1 Datasets
We integrate the gene interaction network, the GO graph, the gene-
GO associations and the gene-disease associations into a unified
computational framework.

The gene interaction network is derived from HumanNet (Kim,
2022). This database covers 99.8% protein-encoding genes of
Homo sapiens and is constructed by means of the expanded data
with network inference algorithms. The weight of links in this net-
work is calculated as log-likelihood score (LLS) based on their
Bayesian statistics algorithms. It supports a three-tier model: a pro-
tein–protein physical interaction network HumanNet-PI, a function-
al gene network HumanNet-FN and a functional network extended
by co-citation HumanNet-XC. We use HumanNet-FN as the train-
ing data.

The GO knowledgebase is the world’s largest source of
information on the functions of genes (Ashburner et al., 2000;
Carbon et al., 2021). GO annotations are divided into three top-
level branch terms: biological_process (BP), molecular_function
(MF), cellular_component (CC). All GO terms and the set of inclu-
sion relationships form a hierarchy and directed acyclic graph of
GO. This GO graph can be modeled as a multirelational graph in
our framework. Unlike other disease similarity methods, we use all
three branches of GO instead of only considering the BP branch.
Besides, the gene-GO associations are downloaded from NCBI Gene
database to bridge gene instances and ontology concepts.

The gene-disease associations are obtained from DisGeNET
database (Pi~nero et al., 2020). DisGeNET is a knowledge manage-
ment platform integrating and standardizing data about disease-
associated genes and variations, which covers more than 24 000
diseases, 17 000 genes and 117 000 genomics variations.

2.2 Networks construction
To formulize all the graph structure data above, we use Gg; Go and
D to denote gene interaction network, GO graph and the disease set
separately. The gene network is defined as an undirected weighted
graph Gg 2 ðV; E;WÞ, where V represents the jVj ¼ n vertices in gene
network, E is a set of edges and W 2 Rn�n is a weighted adjacency
matrix encoding the edge weight between two genes. The original
weight between gi and gj is their associated LLS provided by
HumanNet. We normalize the edge weight as follow to rescale it
between 0 and 1:

w0i;j ¼
wi;j �wmin

wmax �wmin

The GO graph is defined as a directed and labeled multirela-
tional graph as Go 2 ðV; E;RÞ with vertices and labeled edges.
ðvi; r; vjÞ 2 E, where r 2 R is a relation type. For example, glucose
transport, is_a, monosaccharide transport denotes that the glucose
transport is a subtype of monosaccharide transport. To make the
GO graph more suitable for our intra-view model processing, we
add inverse relation and self-connection to R. Though most GO-
based methods only use relation ‘is_a’ and BP branch to construct
models, in our case, we use all GO terms and relationships in GO.

2.3 Intra-view model
The intra-view model consists of two graph encoders f ð�Þ to extract
the original structure information in gene interaction network Gg

and GO graph Go separately to corresponding embedding spaces.
We opt for simplicity and adopt the commonly used two-layer GCN
to obtain gene embedding u ¼ fgðGgÞ, where u 2 Rd is the output of
GCN. Similarly, we use two-layer relational graph convolutional
network (RGCN) to obtain the GO embedding v ¼ foðGoÞ, where
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v 2 Rd is the output of RGCN. The output dimension of GCN and
RGCN should be the same for the ease of projection and loss
calculation.

The GCN model uses both the graph structure and node features
to learn the embedding of nodes. In original GCN (Kipf and
Welling, 2017), multilayer perceptron (MLP) and summation oper-
ation over connected nodes are combined together to propagate fea-
tures among neighbors:

Xðlþ1Þ ¼ rðÂXðlÞWðlÞÞ

where XðlÞ means the lth layer features and X0 is the original node
features. WðlÞ is the weight of lth linear layer and r is an activation
function. We initialize X0 as one-hot coding of each gene and use
leaky-ReLU as the activation function. The normalized adjacency
matrix Â is utilized to encode structure information:

Â ¼ D�
1
2ðAþ IÞD�1

2

where I is an identity matrix and denotes self-connection, D is a di-
agonal degree matrix where Dði;iÞ ¼

P
j Aði;jÞ. The adjacency matrix

can include other values than one representing edge weights.
Different from GCN, RGCN model introduces relation-specific

transformations depending on the type and direction of an edge
(Schlichtkrull et al., 2017). It is motivated as an extension of GCN to
the large-scale relational graph. In GCN, weight WðlÞ is shared by all
edges in layer l. In contrast, in RGCN, different edge types use different
weights and only edges of the same relation type r are associated with
the same transformation weight W

ðlÞ
r . It defines a similar propagation

model for calculating the forward-pass update of the node feature
denoted by vi in a directed and labeled multirelational graph:

vlþ1
i ¼ r

X
r2R

X
j2N r

i

1

ci;r
WðlÞ

r v
ðlÞ
j þW

ðlÞ
0 v
ðlÞ
i

 !

whereN r
i denotes the set of neighbor indices of node i under relation

r 2 R. ci;r ¼ jN r
i j is a normalization constant. W

ðlÞ
r is the

relation-specific weight matrix in layer l and W
ðlÞ
0 is the weight of

self-connection in layer l. In our case, we use one-hot coding as the
initial feature of GO terms and leaky-ReLU as the activation
function.

2.4 Cross-view model
To enable the feature extraction with gene-GO associations, it is in-
tuitive that relevant genes and GO annotations should be similar to
each other and unrelated pairs should be far away in common
embedding space. This is consistent with the assumption of contrast-
ive learning framework. With such motivation, we propose a cross-
view contrastive loss that enables model to learn gene-GO connec-
tions to improve the embedding of the previous intra-view model.

The cross-view model is a neural network to perform nonlinear
projection that maps intra-view embedding vectors to the space where
contrastive loss is applied. We use MLP with one hidden layer to ob-
tain z ¼ gðhÞ ¼Wð2ÞrðWð1ÞhÞ where r is a ReLU function and h can
be either gene embedding u or GO embedding v. To maximize the
agreement between the gene instances and corresponding ontology
concepts, we propose a cross-view contrastive loss to learn the embed-
ding z and model parameters. We treat the genes and their correspond-
ing GO terms as positive pairs and others as negatives. Let
simðzi; zjÞ ¼ z>i zj=jjzijjjjzjjj denotes the dot product between ‘2 nor-
malized zi and zj. Then the cross-view contrastive loss function for
gene i is defined as

‘i ¼ �log

PNo

j¼1 Ii;j exp ðsimðzg
i ; z

o
j Þ=sÞPNo

k¼1 exp ðsimðzg
i ; z

o
j Þ=sÞ

where Ii;j 2 f0; 1g is an indicator function equal to 1 if gene i is
annotated by GO term j. And s denotes a temperature parameter
controlling the scale of distribution and we set it equal to 1.

The cross-view contrastive learning paradigm provides each gene
with some intuitive GO annotation information and promotes the
automatic cohesion of genes engaged in biological process, perform-
ing the similar molecular function or occurring in the same cell com-
ponent. Whereas mutual repulsion forces exist between genes with

Fig. 1. Overview of CoGO. In the training stage, GCN and RGCN are implemented to encode features of gene interaction network and GO graph. MLP is applied to map the

output of GCN and RGCN to the common embedding space. Contrastive loss is used to maximize the agreement of corresponding genes and GO terms. In the inference stage,

only trained GCN is preserved to calculate the gene embedding. And disease representation is derived from related gene embedding by average pooling
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different GO annotations. This process refines gene representations
by incorporating the information from GO annotations and results
in meaningful disease representations.

2.5 Model training
CoGO uses the GCN and RGCN mentioned in the intra-view model
to obtain the structure information in gene network Gg and GO
graph Go parallelly. And we adopt a weight-sharing nonlinear pro-
jection before calculating the contrastive loss. We use the adaptive
learning rate algorithm RMSProp as an optimizer. After several
rounds of parameter optimization, the model output tends to con-
verge. Then we only preserve the GCN encoder fgð�Þ and throw
away other components for downstream computation.

2.6 Disease similarity inference
In the inference stage of CoGO, We calculate the similarity between
diseases through the embedding vector of disease-related genes.
First, we extract gene set Gi relevant to disease di 2 D. Second, we
perform average pooling on gene embedding to obtain the represen-
tation of each disease:

di ¼
1

jGij
X
gj2Gi

uj

where ui is the representation of a gene gi in gene set Gi. And we can
get the similarity between two diseases by measuring the cosine simi-
larity of their representation vectors.

We use the gene embedding u after GCN rather than z after nonlin-
ear projection for the reason: previous work (Chen et al., 2020) about
contrastive learning demonstrated that a nonlinear projection head
improves the representation quality of the layer before it because the
contrastive loss can induce loss of information. In our cases, the nonlin-
ear projection in the cross-view model can weaken the graph structure
information that is crucial for the disease similarity calculation. And
our ablation experiments also confirmed this point.

3 Results

3.1 Prediction of disease similarity
3.1.1 Benchmark

It is important to choose high-quality benchmark as ground truth to
examine predictive models. We follow other disease similarity methods
and use the same benchmark as theirs (Li et al., 2021). It integrates
highly similar disease pairs derived from two different data sources:
one is predicted by multiple human molecular networks (Suthram
et al., 2010), and it has been further verified by Mathur and
Dinakarpandian (2012) according to literature. The other is discovered
by Pakhomov et al. (2010) according to the electronic health records
(EHR) of the US population. Thus, this benchmark can balance the im-
pact of phenotypic and molecular level on disease similarity assessment.
Besides, this benchmark data is highly imbalanced because of few posi-
tive pairs compared to the number of all potential disease pairs.

3.1.2 Experimental setup

A previous study (Li et al., 2021) demonstrated Li’s method
achieved state-of-the-art (SOTA) performance and improved the
Area Under Receiver Operating Characteristic (AUROC) score by
10.1%. For comparison, we use this method as the baseline:

• Li method (Li et al., 2021) integrates gene interaction network

and GO hierarchy to reconstruct a novel gene network, and uti-

lizes graph representation learning model LINE (Tang et al.,

2015) to learn gene representations. And disease similarity is cal-

culated by the cosine similarity of disease embedding derived

from related gene representations.

We run CoGO for 200 epochs with a learning rate of 0.003 until
convergence. In addition, we set hyper-parameter s to 1.0 the dimen-
sion of all hidden layers in our model to 32. For Li’s method, the im-
plementation is consistent with the settings in their paper.

3.1.3 Evaluation metrics

Evaluation metric plays a critical role in achieving the optimal dis-
criminator in the inference stage. Although most disease similarity
researches adopt Receiver Operating Characteristic (ROC) curve
and AUROC to evaluate their model, we introduce Precision–Recall
Curve (PRC) and Area Under PRC (AUPRC) to evaluate our model
for two main reasons: first, ROC curve can present an overly opti-
mistic view of a model’s performance when applied to imbalanced
data sets. Second, PRC gives a more informative picture of an algo-
rithm when dealing with highly skewed datasets. And AUPRC is
useful when we care about our model handling the positive exam-
ples correctly.

Both AUROC and AUPRC are restricted to lie in ½0;1�. A larger
numerical metric represents better model performance.

3.1.4 Experimental results

Figures 2 and 3 show the ROC, PRC and corresponding AUROC,
AUPRC obtained by CoGO and Li. The difference between AUROC
reported here against the original paper is caused by the negative
sampling strategy and stochastic parameter initialization and opti-
mization methods. The AUROC score of our method is higher than
the previous SOTA by 2.43%. This demonstrates that our method
achieves the best performance in contrast to traditional feature de-
sign methods and even the graph representation learning method.
Although in AUROC, the gap between CoGO and Li is not as much
as Li and the third-best method (which is 10.1%), CoGO shows sig-
nificantly high AUPRC than Li by 19.57%. In other words, whereas
Li can achieve competitive performance in identifying true similar
disease pairs, the false positive rate is very high. In comparison,
CoGO can not only effectively find true positive disease similar
pairs, but also discriminate the false positive samples.

In order to examine the evaluation effect of different ground
truth datasets on disease similarity prediction task, we compare
CoGO and Li’s model in the two latest datasets (Dong et al., 2021;
Westergaard et al., 2019; Xu, 2022). Westergaard et al. constructed
a comprehensive map of disease co-occurrences in the complete
Danish population. Dong et al. investigated the multimorbid rela-
tions among 439 common diseases using hospital inpatient data in
the UK Biobank. Both of them assess disease relations in phenotypic
level based on patients’ diagnoses in EHR. Meanwhile, considering
that disease pairs of original benchmark dataset are derived from US
EHR and molecular network, each of which was treated as baselines

Fig. 2. ROC curve and AUROC scores from CoGO and previous SOTA method
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as well. Table 1 shows that CoGO outperforms Li consistently in
various baseline datasets. Prediction performance on EHR-based
datasets is relatively unsatisfactory and merging all three EHR-
based baselines from Danish, the UK and the US population cannot
improve prediction performance. The above results might indicate
limited contributions of EHR-based phenotypic features to model
assessment. In contrast, performance of CoGO and Li on molecular
network-based dataset improves significantly compared to counter-
parts on EHR-based datasets, demonstrating prominent advantage
of molecular over phenotypic features in model evaluation. Notably,
both CoGO and Li achieve optimal performance on the original
benchmark, indicating its superiority in orchestrating phenotypic
and molecular level data.

In addition, one of the most advantages of CoGO is the way it
processes the input raw data. Traditional nonparametric models
take hours to extract features in raw data which are time-consuming
and hard to extend to high throughput computation. Li’s model,
though takes an advanced graph learning model, spends more than
10 h in constructing gene network and 192 min in model training in
Intel Core i7-10700 CPU @ 2.90 GHz. In contrast, CoGO follows
the end-to-end learning paradigm and can finish training and disease
similarity inference within 32 min in the same equipment.

Overall, the results above demonstrate CoGO achieves SOTA
performance in disease similarity problems by integrating multiview
data into a contrastive learning framework.

3.2 Ablation experiment
To demonstrate the relative importance of each dataset and our
model structure, we conduct ablation analysis by selecting different
network data or removing some characteristics of our model
components.

Specifically, we denote our original model as ‘CoGO’ and use
detailed descriptions to the variants. From the view of the dataset,
we select BP branch in GO graph, HumanNet-XC and curated
DisGeNET respectively. To further investigate the power of

components in the intra-view model, we replace RGCN model with
GCN to evaluate the effect of relation-specific transformations in
GO graph and denote it as ‘GCN-only’. In addition, we treat the
interaction between genes uniformly and use unweighted
HumanNet-FN as the input of GCN and denote it as ‘Unweighted’.
We also modify the cross-view model by replacing the nonlinear
projection with linear projection and denote it as ‘Linear’. We also
utilize the embedding z after projection to infer the representation of
disease and denote it as ‘z-based’.

The results are shown in Figure 4. Using BP branch for model
training has a trivial influence effect on model performance. This
may be because BP branch contains most of the annotation informa-
tion and close genes in the network are more likely to engage in the
same biological process rather than have similar molecular functions
or appear in the same cellular component. HumanNet-XC is the
functional gene network extended network by co-citation, which
has more noise in gene interactions and leads to model performance
degradation. The curated gene-disease associations in DisGeNET
are high confidence but may lose some disease-related gene
information.

To assess the contribution of individual factors to CoGO, we
evaluate both intra-view model and cross-view model. As shown in
Figure 4, the RGCN model and the nonlinear projection are the two
most important components. The relation-specific modeling in
RGCN model shows a promising effect in knowledge graph infor-
mation extraction. Nonlinear projection before calculating contrast-
ive loss plays crucial importance in our full model. And as
illustrated in Section 2.5, using embedding z will result in a decrease
in model performance. In addition, we can gain better performance
by incorporating edge weight in our GCN model. The result shows
that a variety of different mechanisms contribute to CoGO’s
performance.

3.3 Comparison with other disease similarity studies
To validate the credibility of the disease relationships found by
CoGO, we compare them to the disease-associations related studies
conducted by Dong et al. (2021), Zhou et al. (2014) and Sánchez-
Valle et al. (2020). Dong et al. investigated the multimorbid rela-
tions among 439 common diseases using hospital inpatient data in
the UK Biobank. Zhou et al. used biomedical literature database to
investigate the symptom-based similarity of two diseases. Sánchez-
Valle et al. inferred disease interactions from similarities between
patients’ gene expression profiles. To infer credible disease similarity
pairs, we select the similarity score which maximizes the F1 score in
our benchmark datasets as the threshold. We calculate the odds
ratio (OR) and use Fisher exact test to evaluate the overlap between
different studies. Results are shown in Table 2.

There are 435 diseases commonly used by Dong et al. and us.
The comparison results show that the multimorbid relations identi-
fied by Dong et al. and our model have significant overlap
(OR¼2.3, P¼1.1e-288). Zhou’s study shared 1217 diseases with

Fig. 3. PR curve and AUPRC scores from CoGO and previous SOTA method

Table 1. Model comparisons in different baseline datasets

Dataset AUROC AUPRC

Li CoGO Li CoGO

Westergaard et al. (Danish EHR) 0.4453 0.5006 0.4746 0.5232

Dong et al. (UK EHR) 0.4427 0.4773 0.4823 0.4918

Benchmark (US EHR) 0.4280 0.5857 0.4495 0.7003

Merged (DanishþUKþUS EHR) 0.4499 0.5339 0.4514 0.5723

Benchmark (molecular network) 0.6354 0.7438 0.5739 0.8063

Benchmark (US EHRþmolecular

network)

0.7818 0.8317 0.5776 0.7733

Fig. 4. Performance of CoGO and its variants in ablation experiment
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ours and the overlap of disease relations is also highly significant
(OR¼3.3, P¼0). While there are a total of 103 diseases commonly
used by Sánchez-Valle et al. and us, the comparison shows that our

result is inconsistent with theirs (OR¼0.9, P¼0.9897). To further
investigate the reliability of Sánchez-Valle’s result, we compare these

three disease similarity studies with each other. Result shows that
disease relationships found by Dong et al. and Zhou et al. share sig-
nificantly (OR¼8.4, P¼0). However, there is no obvious overlap

between Sánchez-Valle’s and Dong’s (OR¼0.9, P¼0.8623) or
Zhou’s (OR¼1.1, P¼0.1229). Thus, from the perspective of the
above comparative studies, disease similarity result from Sánchez-

Valle et al. should be treated with caution.
Taken together, disease relationships inferred by CoGO could be

confirmed by previous parallel studies and highly credible.

3.4 Case study
To further verify the generalization power of our model, we address
two intuitive questions: first, does our model perform equally in
both widely studied diseases and relatively rare diseases? Second,

does our model discriminate similarity simply based on the intersec-
tion of genes?

Thus, we select several diseases with different sizes of associated
genes and find their top five similar diseases to do a case study. We
study the asthma with 3443 related genes, bipolar disorder with

1183 related genes and Chronic Progressive External
Ophthalmoplegia (CPEO) with only 52 related genes. Furthermore,

we use Jaccard Index (JIg) based on common genes to evaluate the
similarity between two disease-related gene sets Gi and Gj as follow:

JIgðGi;GjÞ ¼
jGi \Gjj
jGi [Gjj

As shown in Table 3, 14 of 15 predicted similar diseases have
been reported by other researchers and two of them are further

included in the benchmark. For example, recent research conducted
a cross-sectional study of electronic health record information for
56.6 million Americans. Results showed that asthma is significantly

more common in those with multiple sclerosis than in the general
population—particularly in the young and elderly—irrespective of
gender and race. Besides, although bipolar disorder and drug de-

pendence share few common genes according to their JIg, Leventhal
Adam and Zimmerman (2010) used individual logistic regression

models to indicate that presence of lifetime Bipolar Disorder was
associated with significant increases in rates of lifetime drug depend-
ence. The result shows that CoGO maintains good performance in

both widely studied diseases and relatively rare diseases. This is
attributed to CoGO aiding gene representation learning with corre-
sponding ontology concepts.

Although most of the similar diseases possess relatively low JIg,
they have been confirmed to have comorbidity by literature. This

illustrates that although many similar diseases cannot be discrimi-
nated based on their related genes, CoGO is able to learn meaning-
ful disease representation containing gene interaction patterns and

gene annotation information.

4 Conclusion

In this work, we present a novel method ‘CoGO’ to incorporate the
disease-related molecular data and ontology-based domain know-

ledge using competitive graph deep learning models, demonstrating
its implementation and performance on benchmark evaluation and

detailed case study. Our approach fully follows the modern deep
learning paradigm and circumvents the manual feature extraction
step which is highly biased and time-consuming.

By combining our findings, we show that contrastive learning,
which dominants the self-supervised learning domain in vision tasks,

can learn densely informative representations from multiview data
sources and be extended to solve other problems like integrated bio-
informatics analysis. In addition, although using GCNs in the mo-

lecular graph has been widely adopted, relation-specific modeling of
knowledge graph shows promising direction to extract human-

curated domain knowledge.
We also find current obstacles in disease similarity problems.

The benchmark is out-of-date and only covers a small portion of dis-
ease space, which hinders the development of machine learning
models. In addition, the similarity of diseases can be measured from

different aspects such as phenotypes, molecular features or medicine
treatments. Thus, fine-grained measurement is needed to transform

disease similarity problem from binary classification tasks to multi-
label classification problems.
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Table 2. Disease similarity comparisons between Dong et al:, Zhou et al., Sánchez-Valle et al: and ours

Study 1 Study 2 Shared diseases Disease pairs

in Study 1

Disease pairs

in Study 2

Overlapping disease

pairs

OR P-values

Ours Dong et al. 435 15 463 12 005 3435 2.3 1.1e-288

Zhou et al. 1217 39 561 74 741 9992 3.3 0

Sánchez-Valle et al. 103 2077 2241 846 0.9 0.9897

Sánchez-Valle et al. Dong et al. 60 798 345 147 0.9 0.8623

Zhou et al. 57 611 579 233 1.1 0.1229

Dong et al. Zhou et al. 343 3327 4146 1093 8.4 0

Table 3. Top five similar diseases predicted by CoGO

Aim Similar diseases JIg Evidence

Asthma Multiple sclerosis 0.259 PMID: 30557818

Rheumatoid arthritis 0.291 PMID: 32906033

Autoimmune diseases 0.261 PMID: 31219041

Inflammatory bowel diseases 0.253 PMID: 30250122

Psoriasis 0.243 PMID: 29490768

Bipolar disorder Schizophrenia 0.250 PMID: 29906448

Anxiety 0.173 PMID: 25617037

Drug dependence 0.065 PMID: 20565163

Obesity 0.132 PMID: 24194362

Mood disorders 0.219 PMID: 12071513

CPEO MERRF syndrome 0.180 PMID: 9436447

Pigmentary retinopathy 0.045 PMID: 22993469

Nocturia 0.086 None

Respiratory insufficiency 0.019 PMID: 21533826

MELAS syndrome 0.183 PMID: 8363452

Note: Bold: the similar disease in benchmark.
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