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Abstract

Background: 3’-tag-based sequencing methods have become the predominant
approach for single-cell and spatial transcriptomics, with some protocols proven
effective in detecting alternative polyadenylation (APA). While numerous com-
putational tools have been developed for APA detection from these sequencing
data, the absence of comprehensive benchmarks and the diversity of sequencing
protocols and tools make it challenging to select appropriate methods for APA
analysis in these contexts.
Results: We systematically compared seven 3’-tag-based sequencing proto-
cols and identified key peak features affecting APA detection performance.
We developed a simulation pipeline that generates realistic datasets preserving
protocol-specific characteristics. Using simulated and real data, we comprehen-
sively assessed six computational tools for their ability to identify polyA sites,
quantify polyA site expression, detect differentially expressed (DE) APA genes,
filter sequencing artifacts, and their computational efficiency. We also investi-
gated factors influencing APA detection. Our evaluation revealed that SCAPE
and scAPAtrap generally outperformed other tools across various performance
metrics and protocols.
Conclusion: Our systematic evaluation provides guidance for tool selection,
experiment design, and future tool development in APA analysis for single-
cell and spatial transcriptomics, paving the way for investigating APA in these
contexts.
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1 Introduction

Alternative polyadenylation (APA) is a widespread post-transcriptional regulatory
mechanism. It generates mRNA isoforms with diverse 3’UTRs and terminal exons by
utilizing different polyadenylation sites (pA sites) [1–3]. APA participates in numerous
biological processes, such as disease progression, developmental regulation, and neural
system modulation by affecting mRNA stability [4, 5], translation efficiency, subcel-
lular localization [6, 7], and protein isoforms [8–10]. Bulk-level APA studies generally
use specialized 3’-end sequencing technologies, which are similar to the 3’-tag-based
RNA sequencing protocols commonly employed in single-cell and spatial transcrip-
tomics. These protocols, such as 10X Chromium [11], Drop-seq, Microwell-seq [12],
10X Visium, Stereo-seq [13], Slide-seq V2 [14], and Spatial Transcriptomics (ST) [15],
all generate sequence reads that are enriched at the 3’ ends of transcripts (Fig. 1b).
Various tools have been developed to identify APA events from these 3’-tag-based
sequencing data, such as scAPA [16], scAPAtrap [17], Sierra [18], SAPAS [19], scDa-
Pars [20], SCAPTURE [21], MAAPER [22], SCAPE [23], and Infernape [24], enabling
APA detection at single-cell and spatial resolutions. However, the absence of system-
atic benchmark and the diversity of sequencing protocols and APA detection tools
make it challenging to select appropriate methods for APA detection in single-cell and
spatial transcriptomics.
Detecting APA events from 3’-tag-based RNA-seq data typically involves a four-step
workflow: (i) identifying pA sites through peak calling; (ii) filter pA sites based on
rules [16–19], statistical modeling [22, 23], or deep learning models [21]; (iii) quantify-
ing pA site usage via rules [16, 17, 19, 23] or statistical modeling approaches [22–24];
(iv) Identify significant APA events based on statistical tests and thresholds of metrics
that quantify APA usage. However, several challenges can complicate APA detection,
including (i) peak overlap; (ii) peak shift; (iii) weak signals; and (iv) sequencing arti-
facts, such as junction reads, internal oligo dT, and antisense reads (Fig. 1a). These
challenges vary in extent and impact across different sequencing protocols and sam-
ples, potentially leading to variable performance of APA detection tools. Current tool
evaluations struggle to assess real-world performance due to the difficulty in accu-
rately modeling peak characteristics in real data. Previous evaluations often rely on
simulated data generated from probabilistic mixture model [23] or make comparisons
on real data using pA site annotations as a substitute for the ground truth [17, 24, 25].
Both approaches have limitations that can hinder the accurate assessment of tool per-
formance.
In this study, we systematically identified and compared data characteristics that
could affect APA detection performance across seven 3’-tag-based sequencing proto-
cols. These protocols cover a wide range of commonly employed sequencing chemistries
and library preparation methods used in single-cell and spatial transcriptomics studies.
We also evaluated the performance of six computational tools in detecting APA events
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using both simulated and real data, considering key metrics such as identification
capability, quantification accuracy, differential APA detection capability, sequencing
artifact filtering, and computational efficiency (Fig. 1c). This work provides guidance
for researchers in selecting appropriate sequencing protocol and computational meth-
ods. Furthermore, it offers insights for developers to optimize APA detection tools,
promoting the advancement of APA research in single-cell and spatial transcriptomics.

2 Results

2.1 Benchmark framework for sequencing protocols and tools
that detects APA events from single-cell and spatial
transcriptome

Our benchmark includes performance evaluations of different sequencing protocols
and tools that detect APA events from single-cell and spatial transcriptomes (Fig. 1c).
For sequencing protocols, we selected 7 mainstream single-cell/spatial transcriptome
sequencing protocols, including 10X Chromium, Dropseq, Microwell-seq, 10X Visium,
Stereo-seq, Slide-seq V2, and SpatialTranscriptomics (ST). Each protocol included 4
samples covering 2-3 mouse tissue types (Additional File 2: Supplementary Table 1).
Since APA event detection from 3’ enriched sequencing data relies on peak calling,
the peak characteristics of different sequencing protocols can affect the performance
of APA detection tools. To examine the peak characteristics of each sequencing proto-
col, we extracted nonoverlapping peaks as representation based on integrated pA site
annotations (See Methods). We evaluated peak characteristics including peak position,
peak shape, and peak consistency. Furthermore, 3’ enriched RNA-seq data contains
a certain number of reads with polyA cleavage sites (pACS), which could potentially
serve as a reliable source for pA site identification. Therefore, we also assessed the fea-
sibility of using pACS reads for pA site identification in different sequencing protocols
by analyzing pA-site-related motifs, ATGC content, and conservation.
For tools, we collected as many APA detection tools applicable to spatial and single-
cell transcriptomes as possible and selected 6 of them (Additional File 3: Table S2)
for systematic performance evaluation on simulated and real datasets. We proposed
a method to generate simulated data with ground truth while preserving protocol-
specific peak characteristics. Specifically, we randomly sampled pA sites from the
integrated mouse pA site annotation and assigned the nonoverlapping peaks from dif-
ferent protocols to these positions, ensuring that each pA site was associated with
one peak. If the number of peaks was insufficient, existing peaks were duplicated and
reassigned. We then distributed these peaks to different barcodes based on a nega-
tive binomial distribution and split them into two groups to simulate differential APA
usage between cell/spot types (see Methods).
We evaluated the tools’ ability to identify pA site and multi-pA-site TEs using accu-
racy, recall, and F1-score as evaluation metrics. To assess identification consistency,
we used the Jaccard index at pA site level and multi-pA-site TE level across sample
replicates as metrics. For quantification capability, we used the mean absolute per-
centage error (MAPE) between the tools’ quantification results on simulated data and
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the ground truth pA site expression. To test how the aforementioned performance
ultimately affects the identification of genes with significant APA differences, we used
the F1-score, accuracy, and recall of differentially expressed (DE) APA genes under
various statistical tests and filter thresholds as evaluation metrics. Furthermore, we
assessed the ability of the six tools to filter out sequencing artifacts in real datasets,
focusing on two common types of artifacts: reads spanning splice junctions and internal
oligo(dT) primed reads. We calculated the proportion of identified pA sites originat-
ing from these two types of sequencing artifacts to evaluate each tool’s effectiveness
in handling such artifacts. Finally, we assessed the computational resources consumed
by each tool.

2.2 Comparison of peak characteristics from different
sequencing protocols

To investigate the effect of peak characteristics from different sequencing protocols
on APA detection, we compared peak features of seven sequencing protocols. We
extracted nonoverlapping pA sites with no other pA site within 500 bp upstream or
downstream of the integrated pA site annotation (see Methods). For each sequenc-
ing protocol, we retrieved all reads within 500 bp upstream and downstream of these
nonoverlapping pA sites, obtaining a collection of nonoverlapping peaks. As shown in
Fig. 2b, the majority of reads across all sequencing protocols were concentrated within
the [-400,0] region surrounding the pA site (position 0), with a significant upward
trend at 500 bp upstream and 200 bp downstream. On the basis of this observation,
we selected reads from [-400,20] region surrounding the pA site to represent the peaks
and discarded peaks containing fewer than 50 reads. Stereo-seq and 10X Chromium
have the greatest number of nonoverlapping peaks, which is commensurate with their
high read counts, whereas ST has the lowest read count and number of nonoverlap-
ping peaks.
We calculated five peak features for each sample: peak height, apex position (peak’s
apex position relative to the pA site), edge position (peak’s upstream edge position
relative to the pA site), kurtosis, and skewness (See Methods). For each feature, we
computed the median and standard deviation (SD) across all peaks in a sample (Addi-
tional File 1: Fig. S1). The apex position varies among different sequencing protocols
(Fig. 2c). 10X Chromium and 10X Visium presented the apex positions most distant
from the pA site. Despite variations in the apex position, the edge positions were rela-
tively consistent across protocols, with a maximum difference of less than 15 bp (Fig.
2c). We choose skewness and kurtosis as measures of peak shape. The majority of the
peaks across all the protocols deviate from a normal distribution, exhibiting a nega-
tively skewed and thin tail (Fig. 2d). Notably, the deviations were within an acceptable
range for assuming normality (skewness in [-0.5, 0.5] and kurtosis in [1, 5]). Among the
selected protocols, 10X Chromium produces peaks that most closely resemble a nor-
mal distribution. To further quantify the overall peak consistency across protocols, we
introduced peak variance as a composite measure. The peak variance was calculated
by averaging the z-scores of the standard deviations for apex position, edge position,
kurtosis, and skewness. Microwell-seq and 10X Visium demonstrate the highest peak
consistency, as evidenced by their low peak variance (Fig. 2c).
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2.3 Feasibility of identifying pA site from reads with polyA
cleavage sites

3’-tag-based sequencing technologies generate a small proportion of reads that con-
tain polyA cleavage sites (pACSs), characterized by the presence of polyA sequences
that fail to align to the reference genome at the 3’ end [17, 23]. We extracted reads
containing pACS from seven sequencing protocols and noted that many putative
pACSs had polyA (defined as a stretch of at least 10 continuous A with at most one
mismatch) sequences in [-20,20] region (Additional File 1: Fig. S2b). Upon examining
the alignment of these sites, we observed that alignment softwares resulted in errors
in determining the end position of polyA sequences and aligned reads with long
polyA to A-enriched regions of genome (Additional File 1: Fig. S2a). This suggests
that this identification method may not completely eliminate the influence of internal
oligo-dT priming. We then removed sites with polyA/polyT sequences around to
avoid internal oligo-dT priming and potential antisense reads (see Methods). Filtered
pACSs were then categorized into 3’UTR pACSs and non-3’UTR pACSs based on
whether they could match 3’UTR annotations [26]. The number of pACS in different
samples is shown in Fig. 3a. We analyzed the relationship between sequencing read
length and pACS capture efficiency (defined as the ratio of pACS count to the total
read count) and found that longer read lengths correlated with higher pACS capture
efficiency (Spearman r=0.74, p=8.6e-11).
To validate the reliability of pACS as pA sites, we matched pACS with a compre-
hensive mouse pA site annotation (Fig. 3b, see Methods). Nearly all samples had
over 80% of their 3’UTR pACS matching known pA site annotations, with 10X
Chromium, Drop-seq, and Microwell-seq exhibiting match rates greater than 90%
for 3’UTR pACS. The match rates for non-3’UTR pACS were mostly ranging from
60% to 80%, which were significantly lower than those of 3’UTR pACS (Wilcoxon
rank-sum test, p <0.05), except for Stereo-seq and Slide-seq V2. We observed an read
enrichment upstream of pACS both at matched and unmatched pACS (Additional
File 1: Fig. S3a, S3b). This enrichment pattern is consistent with the expected read
coverage profile around genuine pA sites, where reads tend to accumulate upstream
of the cleavage site.
We analyzed the binding sites of the cleavage and polyadenylation (CPA) mechanism
around pACS. Functional pA sites typically include a polyadenylation signal (PAS),
an upstream cleavage factor (CF) I binding site, and a downstream CFII binding site.
We classified pACS based on the presence of specific motifs within designated win-
dows (marking the pA site as position 0), including the PAS major motif (AATAAA
in [-100,0]) [3, 27], PAS other motifs (noncanonical PAS motifs in [-100,0]) [27], CFI
recognition motif (TGTA in [-100,0]) [3], and CFII recognition motif (TKTKTK
in [0,100]) [3]. While the proportion of matched pACSs that contained PAS motifs
was greater than that of the annotated pA sites, the proportion of PAS motifs in
unmatched pACS was comparable to or slightly lower than that of annotated pA sites
(Fig. 3c). Despite this, unmatched pACS still exhibited PAS enrichment upstream
(Additional File 1: Fig. S5a), suggesting that at least some of these sites might be
genuine pA sites. However, the PAS-motif-containing proportion in unmatched pACS
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from Stereo-seq was significantly lower than that in other protocols, indicating poten-
tial protocol-specific artifacts. To further assess the validity of unmatched pACS,
we investigated their PAS motif distribution patterns and composition. Non-3’UTR
pACS retained a clear upstream PAS motif distribution pattern, similar to that of
annotated pA sites (Additional File 1: Fig. S4a). For 3’UTR pACS, while Microwell-
seq, 10X Chromium, and Drop-seq maintained a discernible upstream distribution
pattern, other sequencing protocols showed weaker enrichment (Additional File 1:
Fig. S5a). Interestingly, the proportion of noncanonical PAS motifs was higher than
that of canonical PAS motifs in unmatched pACS, which differs from the composition
of annotated pA sites(Fig. 3c). Moreover, the PAS motif locations in unmatched
pACS were more dispersed (Fig. 3d and Additional File 1: Fig. S5a). The more
dispersed PAS motif locations and the higher proportion of noncanonical PAS motifs
in unmatched pACS were consistent with the characteristics of minor pA sites, which
often exhibit lower expression and higher cleavage site heterogeneity [28, 29].
We also computed the conservation around pACS (Additional File 1: Fig. S4c,
S5c, see Methods). For 3’UTR pACS, we observed an enhanced conservation region
upstream of the sites. In contrast, the conservation enhancement upstream of non-
3’UTR pACS was weaker. When comparing these patterns to annotated pA sites, we
found that the conservation patterns of pACS were consistent with the annotation,
despite whether they matched the annotation, which further supports the reliability
of pACS as genuine pA sites.
The base composition pattern surrounding pACS provides further evidence for the
credibility of pA site identification. We focused on unmatched pACS and observed
polyA enrichment upstream of pACS in 10X Chromium, Drop-seq, Microwell-seq,
10X Visium, and Slide-seq V2 (Additional File 1: Fig. S3c). This A-rich sequence
context has been reported to be a primitive form of the PAS signal, which is more
frequently found in younger, less conserved polyadenylation sites [30]. The presence of
this A-rich sequence context upstream of unmatched pACS suggests that these sites
might be evolutionarily young, undiscovered minor pA sites. However, Stereo-seq and
ST did not exhibit corresponding patterns (Additional File 1: Fig. S5b). Notably,
Stereo-seq exhibited a repeat-like pattern in the [-90,-70] region in both matched and
unmatched pACS (Additional File 1: Fig. S4b, S5b), indicating a protocol-specific
artifact. This artifact is likely caused by the rolling circle replication method employed
by Stereo-seq.
In conclusion, except for Stereo-seq and ST, the pACS reads generated by other
protocols can be used to identify pA sites after appropriate filtering. Samples with
longer read lengths have higher pACS capture efficiency, providing an advantage in
pACS identification.

2.4 Overall performance of APA detection tools

We evaluated the performance of six tools on 252 simulated datasets, which were
generated based on the characteristics of seven sequencing protocols. For pA site iden-
tification, predicted pA sites within a 200-nt window centered on the ground truth pA
site were considered valid, consistent with our data simulation criteria (see Methods).
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To assess the ability of identifying multi-pA-site genes, we matched pA sites with ter-
minal exons (TEs) and assigned the matched pA sites to the corresponding TEs. The
tool’s ability to discover APA genes was evaluated based on its ability to predict multi-
pA-site TEs. We found that the ability to identify pA sites and the ability to discover
APA genes was highly correlated (Spearman r = 0.906, p <0.001). scAPAtrap and
SCAPE outperformed other tools in identifying pA sites and discovering APA genes
(Fig. 4a, 4b, and Additional File 1: Fig. S7). We also examined the consistency of
pA site and multi-pA-site TE identification via the Jaccard index between replicate
samples under the same ground truth and protocol. SCAPE, scAPA, and scAPAtrap
showed good consistency in identifying pA sites and multi-pA site TEs (Fig. 4c, 4d).
Furthermore, we investigated the ability of the tools to quantify pA site expression.
We evaluated the mean absolute percentage error (MAPE) between the PAS expres-
sion matrix generated by the tools and the ground truth expression matrix at both
barcode and group levels. Only matched pA sites were included in the calculation. If a
predicted pA site matched multiple ground truths, it was assigned to the nearest one.
If a ground truth matched multiple predicted pA sites, the sum of the expression val-
ues of the predicted pA sites was considered as the predicted expression value of that
ground truth pA site. We found that the errors at the barcode level were generally
small, with an average level below 0.1 except for Sierra, but these errors accumulated
to a relatively large extent at the group level, reaching 0.15-0.3 except for Sierra (Fig.
4e, 4f). SCAPE outperformed the other tools in quantifying pA site expression.
To assess the tools’ ability to identify differentially expressed (DE) APA genes in
real-world scenarios, we selected combinations of three statistical tests and six fil-
tering thresholds to screen for significant differences between two barcode groups in
both the ground truth and the predicted results. The three statistical tests included
the following: (i) Wilcoxon rank-sum test on one of the metrics that quantified APA
usage, including percentage of distal poly(A) site usage index (PDUI), percentage of
proximal poly(A) site usage index (PPUI), rank-weighted poly(A) site usage index
(RWUI), or distance-weighted poly(A) site usage index (DWUI), between the two
groups, with an FDR-corrected p-value <0.05 [16]; (ii) Fisher’s exact test, with an
FDR-corrected p-value <0.05 [17, 24]; and (iii) DEXSeq [31] differential test, which
randomly assigns two groups of barcodes into six pseudobulk subgroups, with any pA
site in a TE group having a corrected p-value <0.05 [18, 23]. The six filtering thresh-
olds included PDUIdiff >0.2 [20], PPUIdiff >0.2 [16], RWUIdiff >0.1 [32], DWUIdiff
>0.1 [32], MPRO (maximum difference in proportion change) >0.2 [24], and DEXSeq
log2FC >0.5 [18]. The precision, recall, and F1 score calculated from the filtered DE
APA TEs were used as evaluation metrics. For each tool, we selected the filtering com-
bination with the best performance as its representative. Compared with the other
tools, scAPAtrap and SCAPE showed superior overall performance in identifying dif-
ferential APA genes (Fig. 5a). Except for Infernape and scAPA, all the other tools
achieved a prediction precision higher than 0.9 for all datasets (Fig. 5b). To further
investigate the effect of pA site identification, multi-pA-site TE identification, and pA
site quantification on the final performance of DE APA gene identification, we cal-
culated the Spearman partial correlation between the performance metrics of these
components and the performance metrics of DE APA gene identification. We found
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that the recall of multi-pA-site TE identification was most strongly correlated with the
DE APA F1-score (Fig. 5d). The partial correlation analysis of the recall and precision
of DE APA gene identification revealed that the recall of multi-pA-site TE identifi-
cation affected the overall performance of DE APA gene identification by influencing
the recall of DE APA (Fig. 5e, 5f). This finding was consistent with the high DE APA
precision achieved by most tools (Fig. 5b). We hypothesized that factors such as pA
site overlap, weak signals, and pA site shifting could influence the recall rate of multi-
pA-site TE identification (Fig. 1a). To investigate this, we evaluated the performance
of APA detection tools for TEs with varying pA site gaps and pA site read counts,
and observed how the recall rate changed after extending the TE by different lengths
(Additional File 1: Fig. S8). For each multi-pA-site TE, we ordered its actual pA sites
based on their genomic positions and identified the pair of adjacent pA sites with the
largest gap. We then used the gap size and the lower read count within this pA site
pair as the representative features for the TE. Interestingly, all tools showed a per-
formance drop for smaller pA site gaps, highlighting the substantial negative impact
of pA site overlap on multi-pA-site TE recall. With the exception of Sierra, the recall
rates of the other tools did not exhibit a notable decrease when the minimum pA site
read count was reduced. We found that extending the TE by approximately 100 bp led
to a slight improvement in recall rate across all tools, indicating that pA site shifting
is a common phenomenon with a considerable influence. In essence, the primary lim-
iting factor in identifying differentially expressed APA genes was the low recall rate of
multi-pA-site TE identification, which was influenced by peak overlap and peak shift.
We also tested the ability of the six tools to filter out sequencing artifacts, including
junction-related pA site and internal-oligo-dT-related pA site, on the raw sequencing
data. SCAPE, Infernape, and scAPA filtered sequencing artifacts, whereas scAPAtrap,
SCAPTURE, and Sierra did not (Additional File 1: Fig. S6a, S6b).

2.5 Effects of sequencing protocols and filtering criteria on
APA detection

In addition to comparing the performance of different tools, we also investigated the
differences in APA detection performance using simulated datasets generated from
various sequencing protocols. We ranked the performance metrics of each tool on
simulated datasets derived from the same ground truth but with protocol-specific char-
acteristics and then calculated the average rank for each protocol (Fig. 6a). Although
the tools exhibited varying preferences for different protocols, 10X Visium and 10X
Chromium consistently outperformed other protocols across all the metrics, closely
followed by Microwell-seq and ST. To identify protocol features that influence APA
detection performance, we calculated the Spearman partial correlation coefficients
between protocol peak characteristics and the performance metrics of each tool (Fig.
6b). The apex position SD had a significant negative effect on APA detection perfor-
mance across multiple tools, particularly in terms of pA site expression quantification.
This finding explains the relatively better performance of 10X Visium, 10X Chromium,
Microwell-seq, and ST in APA detection, as they have lower apex position SD (Addi-
tional file 1: Fig. S1).
Next, we investigated the effect of filtering criteria on the identification of differentially
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expressed (DE) APA genes. We computed the F1-score and precision performance
rankings for various combinations of statistical tests and filtering strategies within
the same tool-sample combination. Under commonly used filtering thresholds, the
combination of DEXSeq test/Fisher’s exact test and the DEXSeq log2FC filtering
strategy demonstrated the best performance rankings. The F1-score rankings were
similar across different statistical tests (Fig. 7a), but Fisher’s exact test and DEXSeq
test significantly outperformed the Wilcoxon rank-sum test in terms of precision (Fig.
7b). The differences between filtering strategies were more pronounced than those
between statistical tests, with DEXSeq log2FC exhibiting the best F1-score ranking
(Fig. 7a), followed by RWUIdiff and MPRO. However, MPRO showed the highest pre-
cision ranking (Fig. 7b). Since specific threshold values may also affect performance,
we expanded the threshold range and calculated the average performance for each
threshold and strategy (Additional file 1: Fig. S8). Overall, the recall of DE APA gene
identification decreased with increasing thresholds, while precision initially increased
but then decreased. Within the expanded range, DEXSeq log2FC, RWUIdiff, and
MPRO still outperformed the other filtering strategies. Lowering the filtering thresh-
olds can improve the robustness of the filtering process against the identification and
quantification biases introduced by APA detection tools, but may result in biologically
ambiguous filtering results.

2.6 Computational resource consumption of APA detection
tools

We benchmarked the computational resource consumption of all APA detection tools
under four distinct experimental conditions: (i) varying peak size (number of reads
contained in a peak); (ii) varying gene number; (iii) varying barcode number; and (iv)
varying read length. Each tool was configured uniformly to utilize eight processing
cores, constrained by the --cpus=8 option in Singularity. In terms of computation
time, scAPAtrap significantly outperformed the other methods, closely followed by
Sierra and SCAPTURE (Fig. 8a). For peak memory usage, SCAPTURE, SCAPE, and
scAPAtrap greatly outperformed the other methods (Fig. 8b). Interestingly, although
all tools claimed to support parallel computing, only SCAPE achieved full paralleliza-
tion. The mean CPU load of scAPA increased significantly with increasing peak size
and gene number, while those of scAPAtrap and SCAPTURE were closer to single-
threaded computation (Fig. 8c).
With respect to the effect of data parameters on computation, increasing the peak
size and gene number significantly increased the computation time for all tools except
scAPAtrap and Sierra, and slightly increased the peak memory consumption of all
tools. This can be attributed to the subsequent filtering and statistical modeling of
peaks performed by these tools, in which larger peak sizes and greater gene numbers
significantly increase the postprocessing time but have a relatively minor effect on
the peak calling step. Increasing barcode number had a significant negative effect on
the running time of scAPA, while its effect on the running time of other tools was
relatively minor. Read length had virtually no effect on the computational resource
consumption of the tools.
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3 Discussion

In this study, we established a comprehensive benchmarking framework to evaluate
the performance of different sequencing protocols and tools in detecting APA events
in single-cell and spatial transcriptome data. Our results revealed several key fac-
tors, such as the recall rate of multi-pA-site TE identification, peak characteristics of
sequencing protocols, and the choice of filtering criteria, that significantly influence
the performance of APA event detection. These findings provide important insights
for optimizing existing methods and developing new APA detection tools.
When assessing the performance of different tools, we found that the recall rate of
multi-pA-site TE identification is the main limiting factor affecting the performance of
differential APA gene identification. This result emphasizes the importance of improv-
ing the sensitivity of multi-pA-site TE detection. We discovered that this limiting
factor is influenced by pA site overlap and pA site shifting, revealing the inadequa-
cies of existing peak calling methods and the importance of accurately identifying
pA sites. The ability to recognize pA sites can be enhanced by integrating existing
pA site annotations [22–24], employing deep learning models that incorporate genome
sequence features [21], and applying statistical modeling to peaks [23, 24], thereby
strengthening multi-pA-site TE identification.
Our analysis also revealed that peak characteristics, especially the standard deviation
of apex positions, significantly affect APA detection performance. These character-
istics were sample-specific, and influenced by a combination of factors such as the
sequencing protocol, specific sample, library preparation, and sequencing platform.
This finding highlights the necessity of considering sample specificity when designing
and optimizing APA detection tools. Future tool development can explore strategies
for optimizing algorithm parameters or feature selection tailored to different samples to
improve the robustness of APA event detection. Previous studies have proposed utiliz-
ing pACS reads as a valuable information source for pA site identification [17, 32, 33].
However, our results suggest that the reliability of pACS reads varies not only among
different sequencing protocols but also across individual samples within the same pro-
tocol. While some samples generate pACS reads that can be informative for pA site
identification, others may produce pACS reads that were less reliable or contain errors
introduced by various factors, such as sequencing artifacts and misalignment. There-
fore, before considering the potential integration of pACS reads into existing APA
detection tools or developing new tools that incorporate pACS information, it is crucial
to carefully evaluate the quality and reliability of pACS reads in each specific sample.
When evaluating the effect of filtering criteria on DE APA gene identification, we found
that the combination of Fisher’s exact test/DEXSeq test with the DEXSeq log2FC fil-
tering strategy performed the best. In terms of precision, MPRO and DEXSeq log2FC,
which compare changes in pA site proportions, outperformed strategies that calcu-
late changes in the overall APA usage index of the entire gene. This can be explained
by the latter being more sensitive to incorrect pA site identification. As DEXSeq is
a computationally intensive algorithm, computational resource pressures may arise
when identifying DE APA genes across multiple cell/spot types. We recommend inde-
pendently implementing the DEXSeq approach for calculating the normalized log2FC
and then combining it with Fisher’s exact test for filtering.
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Despite the comprehensive benchmarking and valuable insights provided by our study,
there are several limitations that warrant further discussion. First, the simulated
datasets were constructed using nonoverlapping peaks derived from the original data.
However, due to potential incompleteness in annotations, a small proportion of over-
lapping peaks may have inadvertently been included in the nonoverlapping peak set.
Second, to streamline data simulation and facilitate performance quantification, we
focused exclusively on the most prevalent APA events occurring within TEs. Con-
sequently, intronic APA and TE switch APA events, as described in [1–3], were not
encompassed within the scope of this study. Furthermore, as only a subset of TEs
were sampled and sequencing artifacts could not be systematically introduced into the
simulated data, the resulting datasets may not fully capture the diversity and noise
characteristics inherent to real-world data. Another limitation of our study is the lim-
ited number of sequencing samples used, which may not fully represent the variability
within each protocol. Additionally, peak characteristics are not solely determined by
the sequencing protocol but are influenced by a combination of factors, including the
specific sample, library preparation, and sequencing platform. To generate simulated
data that more faithfully recapitulates the complexities of real data for evaluating
the performance of APA identification tools, further methodological innovations are
necessary.

4 Conclusion

In this study, we established a comprehensive benchmarking framework to evaluate
the performance of different sequencing protocols and tools in detecting APA events
in single-cell and spatial transcriptome data. Among the tools evaluated, SCAPE and
scAPAtrap exhibited the best overall performance in detecting APA events across
various sequencing protocols and sample types. Furthermore, our results demonstrate
that the combination of Fisher’s exact test/DEXSeq test with the DEXSeq log2FC fil-
tering strategy outperforms other filter criteria in identifying differentially expressed
APA genes. Our findings provide valuable insights and guidance for researchers study-
ing APA events in single-cell and spatial transcriptome data, and can inform the
development of future APA detection tools that consider sample-specific factors and
implement optimal analysis strategies. This work provides a solid foundation for
advancing the accuracy and efficiency of APA event detection in single-cell and spatial
transcriptomics.

5 Methods

5.1 Data preprocessing

• 10X Chromium: Fastq files were aligned to the Gencode vm25 reference genome
using cellranger-6.0.2.

• Drop-seq: Fastq files were aligned to the Gencode vm25 reference genome using
Dropseq tools from https://github.com/broadinstitute/Drop-seq as described in
[34].
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• Microwell: Fastq files were aligned to the Gencode vm25 reference genome using the
pipeline from https://github.com/ggjlab/mca data analysis as described in [12].

• 10X Visium: Fastq files were aligned to the Gencode vm25 reference genome using
spaceranger-3.0.1.

• Stereo-seq: Fastq files were aligned to the Gencode vm25 reference genome using
SAW6.0 from https://github.com/STOmics/SAW.

• Slide-seq V2: Fastq files were aligned to the Gencode vm25 reference genome using
the slideseq-tools from https://github.com/MacoskoLab/slideseq-tools as described
in [14].

• Spatial Transcriptomics: Fastq files were aligned to the Gencode vm25
reference genome using the ST pipeline [35] from https://github.com/
SpatialTranscriptomicsResearch/st pipeline as described in [15].

After alignment, Uniquely mapped reads were extracted from the aligned BAM
files using samtools view -h -F 256 -bS. PCR duplicates were then removed using
umi tools dedup.

5.2 An integrated annotation of mouse pA sites

To generate a comprehensive pA site annotation for the mouse genome, we integrated
data from three well-established pA site databases: Gencode M25 [36], PolyA DB v3.2
[37], and PolyASite 2.0[38], following [39]. First, pA sites within ± 10 nt of another pA
sites within the same database were collapsed by selecting the most downstream pA
sites. Next, the following procedure was implemented to reduce redundancy between
databases: (i) we collected pA sites from PolyASite 2.0, (ii) we added pA sites from
PolyA DB v3.2 not within ± 10 nt of the current pA sites set, and (iii) we added pA
sites from Gencode M25 not within ± 10 nt of the current pA sites set. This method of
sequential addition led to a total of 539,346 pA sites in our union set. To streamline the
subsequent data simulation steps, each pA sites in the unified set was assigned to the
terminal exons of Gencode M25 gene annotations based on their genomic coordinates.
In cases where a pA sites matched multiple terminal exons, it was duplicated in the
final annotation.

5.3 Nonoverlapping peak analysis

A nonoverlapping pA site set was obtained by filtering the integrated pA site anno-
tations, selecting those without any other pA sites within 500 bp upstream or
downstream. For each sequencing technology, reads from the [-500, 200] region rela-
tive to each nonoverlapping pA site were extracted from the corresponding BAM files.
Based on the distribution of reads flanking the nonoverlapping pA site, the [-400, 20]
region was chosen to define pA-site-associated peak candidates. Nonoverlapping peaks
containing fewer than 50 reads were discarded. The extracted peaks were converted
into read coverage profiles for the calculation of peak features. for peakj,k in samplek:

PeakHeightj,k = max
i∈[1,nj,k]

ReadCoveragei,j,k

ApexPositionj,k = argmax
i

ReadCoveragei,j,k

12

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 17, 2024. ; https://doi.org/10.1101/2024.10.15.618405doi: bioRxiv preprint 

https://github.com/ggjlab/mca_data_analysis
https://github.com/STOmics/SAW
https://github.com/MacoskoLab/slideseq-tools
https://github.com/SpatialTranscriptomicsResearch/st_pipeline
https://github.com/SpatialTranscriptomicsResearch/st_pipeline
https://doi.org/10.1101/2024.10.15.618405


EdgePositionj,k = max {i | ReadCoveragei,j,k ̸= 0}

Kurtosisj,k =

1
nj ,k

∑nj,k

i=1 ReadCoveragei,j,k × (ij,k − µj,k)
4

[ 1
nj,k−1σj,k]4

Skewnessj,k =

1
nj,k

∑nj ,k
i=1 ReadCoveragei,j,k × (ij,k − µj,k)

3

[ 1
nj,k−1σj,k]3

where:

• ReadCoveragei,j,k denotes the read coverage at position i within the peakj region
in samplek.

• nj,k is the number of positions within the peakj region in samplek.
• ij,k represents the position index within the peakj region in samplek.
• µj,k is the weighted mean position of peakj in samplek, calculated as:

µj,k =

∑nj,k

i=1 ReadCoveragei,j,k × ij,k∑nj,k

i=1 ReadCoveragei,j,k
• σj,k is the weighted standard deviation of positions within the peakj region in
samplek, calculated as:

σj,k =

√√√√ 1

nj,k

nj,k∑
i=1

ReadCoveragei,j,k × (ij,k − µj,k)2

5.4 pACS analysis

We extracted reads containing pACS candidates from the aligned BAM files using the
following criteria for the positive strand: (i) at least 10 nt of unaligned sequence at the
3’ end; (ii) allowing up to 2 non-A bases at the beginning of the unaligned sequence;
(iii) at least 8 out of 10 consecutive bases are A, starting from the first A base in the
unaligned sequence; (iv) the obtained pACS reads were merged using a 20 nt window
to remove redundancy, retaining the pACS closest to the 3’ end as the representative
of the merged group, and only pACSs supported by at least 2 reads were retained. For
the negative strand, the criteria were adapted to consider the reverse complement of
the sequences, with T bases instead of A bases. The resulting pACSs were searched
for the presence of polyA/polyT sequences in a 40 nt window upstream and down-
stream using seqkit grep, with polyA/polyT defined as a stretch of 10 consecutive
A/T allowing up to 1 mismatch. pACSs containing polyA/polyT sequences within this
window were removed from subsequent analyses. We matched the pACSs to the inte-
grated polyA site annotations using a 20 nt window and classified them as matched
or unmatched based on whether they could be matched to the mouse pA site anno-
tation. To filter for 3’UTR pACSs, we extracted 3’ UTR annotations from the mm39
UTR annotations obtained from UTRdb2.0 [26] and converted them to mm10 using
UCSC liftOver. We then classified the pACSs as 3’UTR pACSs or Non-3’UTR pACSs
based on whether they matched the 3’UTR annotations. For the base composition
analysis, we calculated the ATGC content within a 400 nt window centered on the
pACS site. For the conservation analysis of pACSs, we utilized the phastCons60way
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mm10 profile to extract a 200-nucleotide window centered on each pACS, excluding
annotated coding sequence regions. We then calculated the mean conservation score
at each position within the window by aggregating the conservation scores across all
pACSs identified in each sequencing sample. For the pA site related motif analysis,
we used the motif class from Biopython [40] to search for the corresponding motifs
within a 200 nt window centered on the pACS site. The motifs searched included PAS
major: canonical PAS hexamer (AATAAA) [3, 27]; PAS other: non-canonical PAS
motifs (ATTAAA, AGTAAA, TATAAA, CATAAA, TTTAAA, AATACA, AATATA,
GATAAA, AAGAAA, AATGAA, AATAGA, ACTAAA) [27]; CFI: CFI recognition
motif (TGTA) [3]; CFII: CFII recognition motif (TKTKTK) [3]. For the classification
of motifs contained in the pACS sites, we selected PAS major in the [-100,0] region,
PAS other in the [-100,0] region, the CFI recognition motif in the [-50,0] region, and
the CFII recognition motif in the [0,100] region.

5.5 Data simulation

To comprehensively evaluate the performance of the proposed method, we designed
a simulation scheme to generate realistic 3’-tag-based RNA-seq data with known
APA events, preserving peak characteristics from different sequencing protocol. The
simulation process consists of the following steps:

1. Peak extraction
We used the nonoverlapping peaks we extracted from each sample as described
above, reads with the [-400, 20] region were chosen and peaks with fewer than 50
reads were dropped. CIGAR string and distance to pA site of each selected reads
were recorded for read regeneration. Read counts for each peakj are recorded as cj .

2. Gene and terminal exon set definition
We define the following gene and terminal exon sets based on the number and
differential usage of pA site:

• Single-pA-site gene set Gsingle:

– This set contains all genes with only one pA site. Formally, if gene gj has only
one pA site, then gj ∈ Gsingle. This set is designed for tools like Infernape [24]
that require single-pA-site genes for modeling.

• Multi-pA-site terminal exon set Tmulti:

– This set contains all terminal exons with multiple pA site, each with at most
five pA site. Formally, if terminal exon tj has multiple pA site, then tj ∈ Tmulti.
Adjacent pA sites are at least 200 bp away.

– Tmulti can be divided into two subsets:

∗ Differential APA terminal exon set Tdiff : This subset contains terminal
exons with pA site showing differential usage between cell/spot types.

∗ Nondifferential APA terminal exon set Tnondiff : This subset contains ter-
minal exons with pA site showing no significant differential usage between
cell/spot types or conditions.
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Gene set and terminal exon set were randomly sampled from the mouse integrated
pA site annotation described above. If a selected TE contains more than five pA
site, we will randomly choose n pA sites as representation, where n ∼ U{2, 3, 4, 5}.
For each simulated BAM file in this study, we sampled 1000 single-pA-site genes,
2000 differential APA terminal exons, and 2000 nondifferential APA terminal
exons. This sampling process was repeated three times to generate three inde-
pendent datasets, ensuring the robustness of the simulation.
The nonoverlapping peaks were randomly assigned to each pA site without
replacement. If the number of peaks is insufficient to cover all pA site, existing
peaks will be duplicated and reassigned to guarantee that each pA site was asso-
ciated with one peak. The read count for the peak assigned to pAsitej,k within
gene (gj) or terminal exon (tj) was recorded as cj,k.

3. Gene expression allocation
The total expression level of the gene (gj) or terminal exon (tj) with n pA site is
calculated as:

ej =

n∑
i=1

cj,i

The relative usage proportion of each pA site is calculated as:

θθθj =
cj
ej

For each gene (gj) or terminal exon (tj), we generate an allocate vector ∆∆∆j to
allocate gene expression and simulate APA usage between cell/spot type T1 and T2

. Each element ∆j,i of ∆∆∆j is sampled from a Beta distribution:

∆j,i ∼ Beta(α, ϕα)

where α is a shape parameter and ϕ is a scaling factor uniformly sampled from
the range [0.25, 4]. By restricting ϕ to this range, we ensure that the expected
value of the Beta distribution falls between 0.2 and 0.8, allowing us to control
the allocation of reads between the two cell/spot types. Additionally, we randomly
swapped adjacent elements of ∆∆∆j with a probability of 0.1 to introduce further
randomness.
We then use ∆∆∆j to allocate cj to T1 and T2, obtaining cj,T1

and cj,T2
, respectively:

cj,T1
= cj ×∆∆∆j

cj,T2 = cj − cj,T1

The expression levels ej,T1
and ej,T2

and the pA site usage proportion vectors
θθθj,T1

and θθθj,T2
are calculated accordingly.

To ensure that the simulated pA site usage proportions exhibit the desired level of
difference between the two cell/spot types, we perform a chi-square test on θθθj,T1

and θθθj,T2
for multi-pA site terminal exons. For terminal exons in the differential

APA set Tdiff , we require a p-value <0.05 and a proportion difference (PD) >0.2.
For those in the nondifferential set Tnondiff , we require a p-value >0.1 and a PD
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<0.2. If these criteria are not met, we regenerate the allocate vector ∆∆∆j and repeat
the process until the desired level of difference or similarity is achieved.

4. Expression simulation
For each cell/spot type k (T1 or T2) with m cell/spots, we simulated the gene
expression levels and pA site usage proportions as follows:

(a) Determine the number of non-zero cell/spots mj,k,nonzero: For terminal exon tj
in cell/spot type k, we set the number of non-zero cell/spots as:

mj,k,nonzero = min(ej,k,m)

This ensures that the average expression of terminal exon tj in expressing
cell/spots is at least 1. The remaining cell/spots are assigned zero expression to
simulate dropouts in single-cell RNA-seq data.

(b) Sample gene expression levels: For each non-zero cell/spot i in cell/spot type k,
the expression level ej,k,i of gene (gj) / terminal exon (tj) is sampled from a
negative binomial distribution:

ej,k,i ∼ NB

(
µ =

ej,k
mj,k,nonzero

, σ2 = µ+ αµ2

)
where α = 0.1 is used to adjust the dispersion of the distribution.

(c) Assign reads to pA site: Given the expression level ej,k,i of terminal exon tj in
cell/spot i of cell/spot type k, we sample the read counts for each pA site using
a multinomial distribution for multi-pA site terminal exons:

cj,k,i ∼ Multinomial(ej,k,i, θθθj,k)

For single-pA site genes, we directly assign the expression level to the unique
pA site:

cj,k,i = [ej,k,i]

5. Read generation
Finally, we generated reads by extracting sequences from the reference genome
based on the pA site coordinates, read distance to pA site, and CIGAR string. We
then assemble them into reads with simulated UMIs and barcodes utilizing previ-
ously assigned pA site counts for each cell/spot. For each real sample from different
sequencing protocols, we generated three replicates using three independent pA site
ground truth annotations to ensure the robustness of the simulation. Simulated
reads were formatted and dumped as BAM file.

5.6 Settings for APA detection tools

• SCAPE: We followed the instructions on the SCAPE website: https://github.com/
LuChenLab/SCAPE. Default parameters were used in the analysis.

• scAPAtrap: We followed the instructions on the scAPAtrap website: https://
github.com/BMILAB/scAPAtrap. Default parameters were used in the analysis.

• Infernape: We followed the instructions on the Infernape website: https://github.
com/kangbw702/Infernape. Default parameters were used in the analysis.

• SCAPTURE: We followed the instructions on the SCAPTURE website: https:
//github.com/kangbw702/Infernape. Default parameters were used in the analysis.
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• scAPA: We followed the instructions on the scAPA website: https://github.com/
ElkonLab/scAPA. Default parameters were used in the analysis. The mouse intron
and UTR annotations used in scAPA are based on the mm9 genome version. We
used UCSC liftOver to convert these annotations to the mm10 version.

• Sierra: We followed the instructions on the Sierra website: https://github.com/
VCCRI/Sierra. Default parameters were used in the analysis.

scAPAtrap, scAPA, Sierra, SCAPTURE, and Infernape provide intervals of the peaks
corresponding to predicted polyadenylation (pA) sites, but do not provide the exact
locations of the pA sites. We used the end point of each interval (nearest to the poly(A)
tail) as the predicted location of the pA site for these methods.

5.7 Benchmarking evaluation metrics

• pA site identification evaluation: Predicted pA sites were matched to ground
truth pA sites using BEDTools window with a 200-nt window. TPpA represents the
number of predicted pA sites that matched ground truth pA sites, FPpA represents
the number of predicted pA sites that did not match any ground truth pA sites,
and FNpA represents the number of ground truth pA sites that were not matched
by any predicted pA sites.

PrecisionpA =
TPpA

TPpA + FPpA

RecallpA =
TPpA

TPpA + FNpA

F1pA = 2× PrecisionpA ×RecallpA
PrecisionpA +RecallpA

To assess the consistency of pA site identification, we calculated the Jaccard index
between each pair of replicates within the same sample, ground truth, tool, and pro-
tocol combination, considering the sets of predicted pA sites that matched ground
truth pA sites. The Jaccard index between two replicates i and j is defined as:

JaccardpA,i,j =
|pAi ∩ pAj |
|pAi ∪ pAj |

where pAi and pAj are the sets of predicted pA sites that matched ground truth
pA sites in replicates i and j, respectively.
For each combination of sample, ground truth, tool, and protocol with n replicates,
the mean Jaccard index across all pairwise comparisons of the replicates was used
to represent the consistency of pA site identification:

ConsistencypA =

∑n−1
i=1

∑n
j=i+1 JaccardpA,i,j(

n
2

)
• multi-pA-site TE identification evaluation: Ground truth TEs were classified
as multi-pA-site TEs if they contained more than one ground truth pA site. Pre-
dicted pA sites were matched to ground truth TEs using BEDTools intersect, and
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predicted TEs were classified as multi-pA-site TEs if they contained more than one
predicted pA site. TPTE represents the number of TEs that were classified as multi-
pA-site TEs in both the ground truth and the predictions, FPTE represents the
number of TEs that were classified as multi-pA-site TEs in the predictions but not
in the ground truth, and FNTE represents the number of TEs that were classified
as multi-pA-site TEs in the ground truth but not in the predictions.

PrecisionmultiTE =
TPTE

TPTE + FPTE

RecallmultiTE =
TPTE

TPTE + FNTE

F1multiTE = 2× PrecisionTE ×RecallTE

PrecisionTE +RecallTE

To assess the consistency of multi-pA-site TE identification, we calculated the Jac-
card index between each pair of replicates within the same sample, ground truth,
tool, and protocol combination, considering the sets of predicted multi-pA-site TEs.
The Jaccard index between two replicates i and j is defined as:

JaccardTE,i,j =
|TEmulti,i ∩ TEmulti,j |
|TEmulti,i ∪ TEmulti,j |

where TEmulti,i and TEmulti,j are the sets of predicted multi-pA-site TEs in
replicates i and j, respectively.
For each combination of sample, ground truth, tool, and protocol with n replicates,
the mean Jaccard index across all pairwise comparisons of the replicates was used
to represent the consistency of multi-pA-site TE identification:

ConsistencyTE =

∑n−1
i=1

∑n
j=i+1 JaccardTE,i,j(

n
2

)
• pA site quantification evaluation: We evaluated the accuracy of pA site quantifi-
cation by calculating the mean absolute percentage error (MAPE) between the PAS
expression matrix generated by the tools and the ground truth expression matrix at
both barcode and group levels. Only matched pA sites were included in the calcula-
tion. If a predicted pA site matched multiple ground truth pA sites, it was assigned
to the nearest site. If a ground truth pA site matched multiple predicted pA sites,
the sum of the expression values of the predicted pA sites was considered as the
predicted expression value of that ground truth pA site.
The MAPE at the barcode level for a given sample, ground truth, tool, and protocol
combination is defined as:

MAPEbarcode =
1

n×m

n∑
j=1

m∑
i=1

|yi,j − ŷi,j |
yi,j

where n is the number of barcodes, m is the number of matched pA sites with non-
zero ground truth expression values in the sample, yi,j is the ground truth expression
value of the pA site i in barcode j, and ŷi,j is the predicted expression value of
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the pA site i in barcode j. To avoid division by zero, pA sites with ground truth
expression values equal to zero were excluded from the MAPE calculation.
At the group level, barcodes are aggregated into predefined groups. The expression
value of a pA site in a group is the sum of the expression values of the corresponding
pA site across all barcodes in that group. The MAPE at the group level for a given
sample, ground truth, tool, and protocol combination is defined as:

MAPEgroup =
1

l ×m

l∑
k=1

m∑
i=1

|Yi,k − Ŷi,k|
Yi,k

where l is the number of groups, m is the number of matched pA sites with non-zero
ground truth expression values in the sample, Yi,k =

∑
j∈k yi,j is the ground truth

expression value of the pA site i in group k, and Ŷi,k =
∑

j∈k ŷi,j is the predicted
expression value of the pA site i in group k.

• DE APA gene identification evaluation: To assess the tools’ ability to identify
differentially expressed (DE) APA genes, we selected combinations of three statis-
tical tests and six filtering thresholds to screen for significant differences between
two barcode groups in both the ground truth and the predicted results.
The three statistical tests included:

– Wilcoxon rank-sum test on one of one of the four APA usage indices: percentage
of distal poly(A) site usage index (PDUI), percentage of proximal poly(A) site
usage index (PPUI), rank-weighted poly(A) site usage index (RWUI), or distance-
weighted poly(A) site usage index (DWUI) between two groups, with an FDR-
corrected p-value <0.05 [16];

– Fisher’s exact test, with an FDR-corrected p-value <0.05 [17, 24];
– DEXSeq [31] differential test, which randomly assigns two groups of barcodes into
six pseudobulk subgroups, with any pA site in a TE group having a corrected
p-value <0.05 [18, 23].

The six filtering thresholds included:

– PDUIdiff >0.2 between tested groups[20];
– PPUIdiff >0.2 between tested groups[16];
– RWUIdiff >0.1 between tested groups[32];
– DWUIdiff >0.1 between tested groups[32];
– MPRO (maximum difference in proportion change) between tested groups>0.2
[24];

– Any pA site in a TE group having a DEXSeq corrected p-value <0.05 and log2FC
>0.5 between tested groups[18].

For a gene containing n pA sites, we order the pA sites based on their genomic posi-
tions from upstream to downstream as (p1, p2, ...pn). Considering the most upstream
pA site as the origin, the positions of each pA site are denoted as (d1, d2...dn), and
the expression levels of each pA site are represented as (c1, c2...cn). The following
metrics are defined:
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PDUI =
c1∑n
i=1 ci

PPUI =
cn∑n
i=1 ci

RWUI =

∑n
i=1 ci ×

i
n∑n

i=1 ci

DWUI =

∑n
i=1 ci ×

di

dn∑n
i=1 ci

MPRO = max
i∈[1,n]

∣∣∣∣ ci,T1∑n
i=1 ci,T1

− ci,T2∑n
i=1 ci,T2

∣∣∣∣
Ground truth DE APA genes were identified by applying the aforementioned sta-
tistical tests and filtering thresholds to the ground truth TEs. Similarly, predicted
DE APA genes were identified by applying the same tests and thresholds to the
predicted TEs. TPDEAPA represents the number of genes that were classified as
DE APA genes in both the ground truth and the predictions, FPDEAPA represents
the number of genes that were classified as DE APA genes in the predictions but
not in the ground truth, and FNDEAPA represents the number of genes that were
classified as DE APA genes in the ground truth but not in the predictions.
The precision, recall, and F1 score for DE APA gene identification are defined as
follows:

PrecisionDEAPA =
TPDEAPA

TPDEAPA + FPDEAPA

RecallDEAPA =
TPDEAPA

TPDEAPA + FNDEAPA

F1DEAPA = 2× PrecisionDEAPA ×RecallDEAPA

PrecisionDEAPA +RecallDEAPA

5.8 Computational resource benchmark

To evaluate the relationship between computational resource consumption and data
characteristics for different tools, we generated a series of simulated datasets using
data simulation pipeline described above, with specified parameters. The simulation
process used peaks sampled from a normal distribution as input instead of peaks
extracted from sequencing data. We set gene number=4000, peak size=1000, barcode
number=4000, and read length=100 as the standard sample parameters. We then
performed single-variable controlled simulations by varying gene number (1000, 2000,
4000, 8000, 16000), peak size (250, 500, 1000, 2000, 4000), barcode number (1000, 2000,
4000, 8000, 16000), and read length (40, 70, 100, 130, 160). The generated datasets
were processed using tool benchmark pipeline described above, and the computational
resource consumption was recorded using the benchmark function of Snakemake. The
number of CPUs was limited to 8 by the --cpus=8 in Singularity, as some tools (such
as scAPA) may exceed the specified CPU limit written in script. We conducted the
performance tests of the six APA detection tools on a computer with two AMD Epyc
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7763 CPUs (2.45 GHz, 256 MB L3 cache, 128 CPU cores in total) and 1 TB of memory
(DDR4 2400 MHz).

Supplementary information.
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Fig. 3 Feasibility of identifying pA sites from reads with polyA cleavage sites (pACS). (a) Number
of pACS identified in different sequencing protocols (left) and the relationship between read length
and pACS capture efficiency (right). (b) Proportion of pACS matching known pA site annotations
in 3’UTR and non-3’UTR regions. (c) Proportion of pACS containing polyadenylation signal (PAS)
motifs and cleavage factor (CF) binding sites. Motif definition (mark pACS as position 0): (i) PAS
major, AATAAA in [-100,0] [3, 27]; (ii) PAS other, noncanonical PAS motifs in [-100,0] [27]; (iii)
CFI, TGTA in [-100,0] [3]; (iv) CFII, TKTKTK in [0,100] [3]. (d) Standard deviation of PAS motif
positions in different pACS categories.
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Fig. 4 pA site identification and quantification performance of APA detection tools on simulated
datasets. (a,b) Mean F1-score for (a) pA site and (b) multi-pA-site TE identification across different
sequencing protocols. (c,d) Mean Jaccard index for (c) pA site and (d) multi-pA-site TE identification
between replicate simulated samples under the same ground truth and protocol. (e,f) Mean absolute
percentage error (MAPE) for pA site expression quantification at the (e) barcode and (f) group level
across different sequencing protocols.
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Fig. 5 Performance evaluation of APA detection tools in identifying differentially expressed APA
genes on simulated datasets. (a) Mean F1-score, (b) mean precision, and (c) mean recall for DE APA
gene identification across different sequencing protocols. For each tool, the filtering criteria with the
greatest F1-score is selected as its representative. (d-f) Spearman partial correlation between the
performance metrics of pA site identification, multi-pA-site TE identification, pA site quantification,
and the (d) F1-score, (e) precision, and (f) recall of DE APA gene identification. Correlations with
p-value >0.05 were considered insignificant and removed from the heatmaps, with the corresponding
cells left blank. The median -log(p) values represent the median of the negative logarithm of the p-
values for the corresponding Spearman partial correlations across all datasets.
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Fig. 6 Effect of sequencing protocols on APA detection performance. (a) Heatmap showing the
average performance rank of each sequencing protocol across different APA detection metrics. The
metrics include F1-score for differentially expressed (DE) APA gene identification, precision for DE
APA gene identification, mean absolute percentage error (MAPE) at the group level for pA site
expression quantification, MAPE at the barcode level for pA site expression quantification, F1-score
for pA site identification, and F1-score for multi-pA-site TE identification. Lower ranks indicate better
performance. (b) Heatmap showing the Spearman partial correlation coefficients between protocol
peak characteristics and the performance metrics of each tool. Correlations with p-value >0.05 were
considered insignificant and removed from the heatmaps, with the corresponding cells left blank.
The median -log(p) values represent the median of the negative logarithm of the p-values for the
corresponding Spearman partial correlations across all datasets.
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Fig. 7 Effect of statistical tests and filtering strategies on the identification of differentially expressed
APA genes. (a) Heatmap showing the average F1-score rank of different combinations of statistical
tests and filtering strategies within the same tool-sample combination. Lower ranks indicate better
performance.(b) Heatmap showing the average precision rank of different combinations of statistical
tests and filtering strategies within the same tool-sample combination. Lower ranks indicate better
performance.
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Fig. 8 Computational resource consumption of APA detection tools under varying experimental
conditions. (a) Run time (in minutes) of each tool under different peak sizes, gene numbers, barcode
numbers, and read lengths. (b) Peak memory usage (in MB) of each tool under different experimental
conditions. (c) Mean CPU load (in percentage) of each tool under different experimental conditions.
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Fig. S1 Comparison of average peak characteristics across different sequencing protocols. The peak
characteristics include mean peak height, mean apex position, mean edge position, mean kurtosis,
mean skewness, peak height standard deviation (SD), apex position SD, edge position SD, kurtosis
SD, and skewness SD.
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Fig. S2 Artifacts in identifying polyA cleavage sites (pACSs). (a) Schematic representation of mis-
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sequence, leading to misalignment of the read. (b) Proportion of pACS reads containing polyA or
polyT (defined as a stretch of at least 10 continuous A/T with at most one mismatch) in [-20,20]
region across different sequencing protocols.
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Fig. S3 Read coverage profiles around polyA cleavage sites (pACSs) identified in different sequencing
protocols. (a) Read coverage profiles around matched pACSs (i.e., pACSs that match annotated pA
sites) across different sequencing protocols. (b) Read coverage profiles around unmatched pACSs (i.e.,
pACSs that do not match annotated pA sites) across different sequencing protocols.
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Fig. S4 Sequence characteristics around matched polyA cleavage sites (pACSs) identified in different
sequencing protocols and annotated pA sites. (a) Relative density of APA-related motifs (PAS major,
PAS other, CFI, and CFII) around matched pACSs in 3’ UTR and non-3’ UTR regions. (b) Base
composition around matched pACSs in 3’ UTR and non-3’ UTR regions. (c) Conservation profiles
around matched pACSs in 3’ UTR and non-3’ UTR regions. Mouse phastCons60way.UCSC.mm10
conservation scores were extracted in 200 nt windows centered at pACS, with annotated coding
sequence regions excluded.
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Fig. S5 Sequence characteristics around unmatched polyA cleavage sites (pACSs) identified in dif-
ferent sequencing protocols and annotated pA sites. (a) Relative density of APA-related motifs (PAS
major, PAS other, CFI, and CFII) around matched pACSs in 3’ UTR and non-3’ UTR regions.
(b) Base composition around matched pACSs in 3’ UTR and non-3’ UTR regions. (c) Conservation
profiles around matched pACSs in 3’ UTR and non-3’ UTR regions. Mouse phastCons60way conser-
vation scores were extracted in 200 nt windows centered at pACS, with annotated coding sequence
regions excluded.
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Fig. S6 Evaluation of APA detection tools in filtering sequencing artifacts on simulated datasets.
(a) Number of internal oligo-dT-related pA sites identified by each tool across different sequencing
protocols. (b) Number of junction-matched pA sites identified by each tool across different sequencing
protocols.
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Fig. S7 Performance evaluation of APA analysis tools (SCAPE, scAPAtrap, Infernape, SCAP-
TURE, scAPA, and Sierra) on simulated datasets based on different sequencing protocols. The figure
shows the F1-score, recall, and precision for pA site identification and multi-pA-site TE quantifica-
tion, mean absolute percentage error (MAPE) for TE expression quantification at the barcode and
group levels, and F1-score, recall, and precision for DE APA event detection.
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Fig. S8 The effect of peak overlap (peak gap), weak signal (min peak size) and (TE extend length)
on the recall rate of multi-pA-site TE. For each multi-pA-site TE unit, we ordered its ground truth
pA sites according to their genomic positions and identified the pair of neighboring pA sites with the
maximum gap. We then used the gap between these two pA sites and the read count of the smaller
peak as the characteristic features representing the TE unit. For TE extend length, we extend te at
different length to recovery pA sites that missed because of peak shift. The recall rate of multi-pA-site
TE is shown with respect to the maximum gap between the selected pair of adjacent pA sites within
the TE (left panel), the minimum read counts of pA sites of within the TE unit (middle panel), and
the TE extension length (right panel).
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Fig. S9 The effect of filtering thresholds on the performance of differentially expressed (DE) APA
gene identification. The average precision and recall were shown for different combinations of filtering
strategies (PDUI, PPUI, RWUI, DWUI, MPRO, and DEXSeq log2FC) and statistical tests (DEXSeq,
Fisher’s exact test, and Wilcoxon rank-sum test) across an expanded range of threshold values.
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