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ABSTRACT11

Transcriptomic meta-analysis enhances biological veracity and reproducibility by integrating diverse studies, yet prevailing
P-value or effect-size integration approaches exhibit limited power to resolve subtle signatures. We present AWmeta, an
adaptively-weighted framework that unifies both paradigms. Benchmarking across 35 Parkinson’s and Crohn’s disease datasets
spanning diverse tissues and adaptively down-weighting underpowered studies, AWmeta yields higher-fidelity differentially
expressed genes (DEGs) with markedly reduced false positives and establishes superior gene differential quantification
convergence at both gene and study levels over state-of-the-art random-effects model (REM) and original studies. AWmeta
requires fewer samples and DEGs from original studies to achieve substantial gene differential estimates, lowering experimental
costs. We demonstrate AWmeta’s remarkable stability and robustness against external and internal perturbations. Crucially,
AWmeta prioritizes disease tissue-specific mechanisms with higher functional coherence than those from REM and original
studies. By bridging statistical rigor with mechanistic interpretability, AWmeta harmonizes heterogeneous transcriptomic data
into actionable insights, serving as a transformative tool for precision transcriptomic integration.

12

Main13

The exponential expansion of publicly available transcriptomic data, propelled by high-throughput sequencing advancements1,14
presents unprecedented opportunities and concomitant challenges for uncovering robust biological insights through meta-15
analysis. By integrating findings across independent studies, this powerful approach transcends the limitations of individual16
datasets, mitigating issues of statistical power, experimental variability, tissue heterogeneity, and platform-specific biases that17
often obscure subtle yet pathologically relevant expression signatures2, 3. As complex diseases increasingly defy dissection by18
single-study designs, meta-analysis has become indispensable for identifying reproducible biomarkers and elucidating disease19
pathways with enhanced confidence and precision4, 5.20

Contemporary meta-analysis methodologies predominantly fall into three primary categories6: P-value combination,21
effect-size integration, and rank aggregation. P-value-based methods, such as Fisher’s7, Stouffer’s Z-score8, and the adaptively22
weighted Fisher’s (AW-Fisher) technique9, efficiently aggregate statistical significance but typically disregard effect magnitude23
and directionality. Conversely, effect-size approaches quantify expression differences, with the random-effects model (REM)1024
widely adopted due to its capacity to accommodate inter-study heterogeneity and its perceived biological interpretability11.25
REM has underpinned discoveries in diverse areas, including characterizing gut microbiome dysbiosis in Parkinson’s disease12,26
identifying predictive biomarkers for cancer immunotherapy13, and assessing pharmacogene expression in nonalcoholic fatty27
liver disease14. Nevertheless, REM and related models can exhibit sensitivity to outlier studies and rely heavily on assumptions28
about the underlying heterogeneity structure11, 15. Rank-based techniques (e.g., RankProd and RankSum16, 17) offer robustness29
against outliers but often at the cost of statistical resolution and power. Critically, these distinct methodological frameworks30
typically operate in isolation, failing to synergistically leverage their complementary strengths.31

This methodological schism represents a fundamental constraint in transcriptomic meta-analysis, particularly impeding32
progress in complex disease research where robust biological inference demands both high statistical confidence in identifying33
dysregulated genes and accurate quantitative estimates of their expression changes18, 19. Current P-value integration schemes,34
while adept at pinpointing consistently altered genes, offer minimal information on the magnitude or biological relevance of35
these alterations. Conversely, effect-size methods, though designed to quantify these changes, struggle with the pervasive36
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heterogeneity inherent in pooling diverse experimental designs, tissue sources, or patient cohorts, potentially diminishing the37
estimate reliability20. Furthermore, existing approaches lack sophisticated mechanisms to dynamically weight studies based on38
intrinsic data quality or specific biological context, thereby limiting overall sensitivity and the depth of achievable insights.39

To address these critical gaps, we introduce AWmeta, a novel meta-analytic framework that unifies the statistical rigor40
of P-value–based method with the quantitative power of effect-size paradigm. The core innovation of AWmeta lies in an41
adaptive weighting scheme that (1) identifies and up-weights the most informative studies from a heterogeneous pool, and42
(2) explicitly models between-dataset variability to mitigate bias arising from sample size imbalances, data sparsity, and43
technical heterogeneity. Validated on 35 diverse transcriptomic datasets spanning Parkinson’s and Crohn’s disease across44
multiple tissues, AWmeta consistently outperforms the state-of-the-art REM. It secures higher-fidelity differentially expressed45
gene (DEG) identification with markedly reduced false positives, exhibits greater resilience to limited sample size and DEG46
sparsity, and maintains remarkable stability against various perturbations. More importantly, AWmeta delivers gene differential47
estimates with enhanced reproducibility and biological mechanism interpretation. By reducing sample-size requirements and48
demonstrating robustness to noise, AWmeta empowers researchers to mine the ever-expanding corpus of public transcriptomic49
data more effectively, accelerating the discovery of actionable molecular insights across biomedical domains.50

Results51

Overview of AWmeta52
AWmeta is a transcriptomic meta-analytical framework, uniquely synergizing statistical strengths from P-value and effect size53
integration methods (Fig. 1a and "Overview of the AWmeta framework" section in Methods). Following preprocessing of54
multiple transcriptomic datasets from original studies of the same disease tissue ("Transcriptomic data preprocessing" section55
in Methods), AWmeta implements two complementary gene-wise modules: AW-Fisher and AW-REM. The AW-Fisher module56
calculates meta P-values by optimizing study-specific weights to minimize the combined probability, effectively filtering out57
less informative studies while preserving statistical power. Subsequently, in AW-REM module these optimized weights are58
embedded into REM architecture to derive weighted fold change estimates.59

In the following sections, we detail a multifaceted rigorous comparison of AWmeta against the state-of-the-art REM, a60
representative effect-size integration method21, 22. Benchmarking on 35 transcriptomic datasets from Parkinson’s and Crohn’s61
disease tissues (Extended Data Fig. 1 and "Transcriptomic datasets" section in Methods), this evaluation assessed key metrics62
including DEG detection capability and discrimination, gene- and study-wise gene differential quantification convergence,63
stability and robustness, and biological relevance ("Transcriptomic meta-analysis evaluation metrics" section in Methods).64
AWmeta consistently demonstrated superior performance, establishing its utility as a powerful tool for precision transcriptomic65
integration and providing a solid foundation for downstream biological investigation.66

AWmeta secures robust higher-fidelity DEG identification across transcriptomic contexts67
A primary goal of transcriptomic meta-analysis is to enhance statistical power for identifying DEGs reliably, i.e., to detect68
more subtle yet vital DEGs, typically defined by statistical significance and fold-change thresholds (Fig. 1b and "DEG69
detection capability evaluation" section in Methods). Systematically benchmarking across five distinct disease tissue contexts70
using nine combinations of statistical significance (0.01, 0.05, and 0.10) and fold-change thresholds (log2 1.2, log2 1.5, and71
log2 2.0), AWmeta consistently identified significantly more DEGs than REM (P < 10−4, one-tailed Welch’s t-test over 10072
bootstrap iterations; Fig. 1c and Extended Data Fig. 2). For instance, under a specific threshold combination (P < 0.01 and73
| log2 FC|> log2 1.2), AWmeta yielded 69–475% increases in detected DEGs versus REM across all tissues (Fig. 1c), which74
demonstrates AWmeta’s superior statistical sensitivity in DEG detection.75

A key challenge in meta-analysis is to increase statistical power while rigorously controlling false positives. To formally76
evaluate this trade-off, we designed a semi-synthetic simulation framework to assess DEG discrimination ("DEG discrimination77
evaluation using semi-synthetic simulation strategy" section in Methods). Inspired by Li and colleagues23, this framework78
first creates benchmark datasets with a known ground truth of positives (DEGs) and negatives (non-DEGs) (Fig. 1d). We then79
systematically challenged AWmeta’s performance by degrading the biological signal in a controlled manner. This was achieved80
by permuting sample labels in a progressively increasing number of studies within each tissue context (Fig. 1e). Specifically, we81
simulated three distinct noise scenarios by permuting the minimum, median, and maximum allowable number of studies, where82
DEG discrimination was quantified by the area under the receiver operating characteristic curve (AUROC) and the area under83
the precision-recall curve (AUPRC) over the above defined benchmark genes (Fig. 1f). This perturbation design enabled a84
rigorous assessment of AWmeta’s resilience across diverse data quality landscapes, a critical feature for real-world applications.85

Across all simulated noise levels, AWmeta consistently outperformed or was comparable to REM in DEG discrimination.86
Under minimum-permuted low-noise condition, AWmeta demonstrated clear and significant advantage across nearly all tissue87
contexts and DEG thresholds (P < 10−4,10−3,10−2 or 0.05, one-tailed Mann-Whitney test; Fig. 1g and Extended Data Fig. 3).88
As expected, performance decayed for both methods with increasing noise from median and maximum study permutations.89
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However, AWmeta’s superiority over REM was not only maintained but often became more pronounced under these more90
challenging conditions (P < 10−4, one-tailed Mann-Whitney test; Fig. 1h,i and Extended Data Fig. 4 and 5). Notably, AWmeta’s91
performance remained remarkably robust even under high-noise scenarios, with median AUROC and AUPRC exceeding 0.8592
in most cases (Extended Data Fig. 5), highlighting its ability to effectively discount noise from potentially confounding studies.93
Taken together, these results demonstrate that AWmeta achieves a superior balance between heightened detection sensitivity94
and robust discrimination for higher-fidelity DEG identification from heterogeneous transcriptomic datasets.95

AWmeta establishes superior gene- and study-wise convergence in gene differential quantification96
To rigorously assess AWmeta’s ability to synthesize a consensus biological signal from heterogeneous transcriptomic datasets,97
we evaluated its convergence at both gene and study levels. We first quantified gene-wise convergence—the proximity of a98
gene’s meta effect-size estimates to ones from original studies—using the mean absolute deviation (MAD) between meta and99
original fold changes (Fig. 2a and "Gene-wise convergence assessment for gene differential quantification" section in Methods),100
where lower MADs signify more accurate biological representations.101

AWmeta consistently yielded significantly lower gene-wise convergence scores in all five disease tissues, compared to both102
REM and baseline ones (Fig. 2b–f; P < 10−4 or 0.05, one-tailed Mann-Whitney test against AWmeta). Notably, while some103
original studies occasionally outperformed REM in specific contexts, AWmeta (merely 57–74% of REM) consistently achieved104
lower scores than any original study across all tissues, which suggests its capacity to robustly identify and integrate reliable105
signals while effectively down-weighting divergent studies, thereby providing a superior consensus representation of the gene106
expression landscape. Since disease processes are primarily driven by DEGs, we further confirmed this superior performance107
was still evident for these specific genes by the same assessment paradigm using nine distinct thresholds, combining three108
significance levels (0.01, 0.05, and 0.10) and three fold-change cutoffs (log2 1.2, log2 1.5, and log2 2.0). Across all threshold and109
disease tissue scenarios, AWmeta maintained evidently lower convergence scores, accounting for 56–80% of REM (Extended110
Data Fig. 6a–e; P < 10−4,10−3,10−2 or 0.05, one-tailed Mann-Whitney test over AWmeta), which underscores AWmeta’s111
effectiveness to derive robust fold-change estimates for disease-relevant genes, independent of specific statistical criteria.112

Next, we evaluated study-wise convergence to determine how well the meta-analytic results reflect the collective evidence113
across all contributing studies. We employed three complementary approaches: an adjusted rank-sensitive similarity metric114
emphasizing top-ranked genes (denoted "adjusted DE list similarity" thereafter), the arithmetic mean of Jaccard and overlap115
coefficients (JC/OC) for DEG concordance, and the phi coefficient (PC)24 to assess classification agreement beyond chance116
(Fig. 2g–j, Extended Data Fig. 7 and "Study-wise convergence assessment for gene differential quantification" section in117
Methods). Higher scores indicate better study-wise convergence for all metrics.118

Across the five disease tissues, AWmeta consistently achieved significantly higher study-wise convergence scores than119
baselines representing original inter-study agreement, with dramatic 30–1,166% improvements (Fig. 2k–m; P < 0.05 and120
| log2 FC| > log2 1.2 where applicable). While overall convergence scores tended to be lower in Parkinson’s over Crohn’s121
disease tissues, potentially reflecting higher inherent variability within these specific disease contexts, AWmeta significantly122
outperformed REM in the majority (10 out of 15) of comparisons across different metrics and tissues, performing comparably123
otherwise, particularly pronounced in tissues like Parkinson’s and Crohn’s peripheral blood, where AWmeta’s convergence124
scores improved by 35–156% compared to REM (Fig. 2k–m). To further validate these findings for the JC/OC and PC metrics,125
we confirmed AWmeta’s superior performance across nine different DEG cutoffs (Extended Data Fig. 8). These results indicate126
that the gene differential quantification results processed by AWmeta are more representative of the faithful consensus signal127
across studies than those derived from REM or original studies.128

AWmeta attains accelerated meta-analysis convergence with reduced samples and DEGs129
While large sample sizes are known to enhance transcriptomic differential quantification efficacy, the feasibility of achieving130
reliable meta-analytic effect sizes from studies with limited samples has remained an open question. To fill this gap, we131
systematically correlated study-wise convergence with sample size and employed Spearman correlation with a two-tailed132
significance test to capture potentially non-linear dependencies. To ensure robustness and minimize sensitivity to arbitrary133
cutoffs, this association analysis leveraged results derived from nine distinct DEG thresholds (as previously described) across134
both JC/OC and PC metrics.135

We observed pronounced positive correlations between sample size and study-wise convergence in Parkinson’s substantia136
nigra and peripheral blood, as well as in Crohn’s ileal mucosa, for both AWmeta and REM (Fig. 3a–c). This reinforces the137
principle that larger cohorts generally yield results that more closely approximate the consensus biological signal. Crucially,138
at equivalent sample sizes, AWmeta consistently outperformed REM in convergence across all five disease tissues, where139
performance gaps widened progressively with increasing sample size. To illustrate, using the adjusted DE list similarity metric140
in Crohn’s ileal mucosa, while AWmeta and REM exhibited comparable convergence scores (∼ 0.38) at the same sample size141
of 62, AWmeta’s score surged to 0.77 at a sample size of 200—a 54% increase over REM’s 0.50 (Fig. 3a), which demonstrates142
AWmeta can reach much better convergence level under the same sample-size context. Notably, AWmeta attains comparable143
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convergence with considerably fewer samples relative to REM. To reach a convergence score of 0.2 in Parkinson’s substantia144
nigra, for instance, AWmeta necessitated 44% or 43% fewer samples than REM with JC/OC (15 versus 27; Fig. 3b) or PC145
metric (20 versus 35; Fig. 3c). This marked improvement in sample efficiency translates directly into substantial reductions in146
experimental cost and resource allocation.147

We further hypothesized that DEG abundance would positively contribute to accurate meta-analytic estimates for gene148
differential quantification and substantiated this premise through the observation of robust positive correlations between DEG149
number and study-wise convergence across all five disease tissues (Fig. 3d–f), following the analogous procedure to the150
above sample-size correlation analysis. For studies with similar DEG counts, AWmeta constantly yielded higher convergence151
scores than REM, with performance disparity more pronounced as DEG abundance ascended, suggesting AWmeta possesses a152
heightened sensitivity to the underlying biological signal embedded within scattered DEGs. For example, to arrive at a PC153
metric-based convergence score of 0.4 in Crohn’s peripheral blood, AWmeta required only 2,000 DEGs, whereas REM exacted154
approximately 4,600—a 130% escalation—for equivalent resolution (Fig. 3f). This highlights AWmeta’s capacity to achieve155
robust convergence even from datasets with sparser DEG profiles, a practical advantage for experimental designs where DEG156
discovery may be limited.157

Collectively, these findings imply AWmeta can deliver reliable meta-analytic outcomes in less stringent experimental sce-158
narios, such as studies involving milder treatments or designs with fewer replicates, which substantially mitigates experimental159
complexity and cost, especially for ambitious large-scale research programs.160

AWmeta delivers remarkable stability and robustness in transcriptomic integration161
We sought to determine whether AWmeta’s adaptively-weighted strategy confers superior stability and robustness to gene162
differential meta-estimates against REM, and designed quantitative metrics to evaluate consistency over random splits and163
resilience to systematic perturbations across the five disease tissues.164

First, we assessed stability by quantifying the concordance of ranked gene differential lists derived from randomly halved165
sample sets within each study, a process replicated across 100 iterations (Fig. 4a and "Stability and robustness assessment of166
transcriptomic integration" in Methods). Across all five disease tissues, AWmeta exhibited markedly higher stability scores167
relative to REM (Fig. 4b; P < 10−4, one-tailed Welch’s t-test), underscoring its enhanced consistency under data rationing.168
The observation that median stability scores for both methods were below 0.7, is likely attributable to the inherently reduced169
statistical power and study-wise convergence that accompanies halving the sample size (Fig. 3a).170

We then challenged the robustness of each method against two distinct forms of perturbation: external interference,171
simulated by the inclusion of a thematically unrelated study (Fig. 4c and "Stability and robustness assessment of transcriptomic172
integration" in Methods), and internal fragility, evaluated through a systematic leave-one-study-out procedure (Fig. 4e and173
"Stability and robustness assessment of transcriptomic integration" in Methods). Against external interference, AWmeta174
displayed remarkable resilience with median robustness scores above 0.8 and established a significant performance margin over175
REM across all tissues (Fig. 4d; P < 10−4,10−2 or 0.05, one-tailed Mann-Whitney test). This capacity to resist discordant data176
is a direct consequence of AWmeta’s adaptive weighting scheme, which effectively minimizes the influence of outlier studies.177
In internal robustness assessment, AWmeta again achieved significantly higher scores than REM in four of the five tissues178
(Fig. 4f; P < 0.05, one-tailed Mann-Whitney test). The sole exception was Crohn’s peripheral blood, where the small cohort of179
only three studies constrained the median robustness scores to below 0.6 for both methods. Notably, in tissues comprising six180
or more studies, AWmeta achieved exceptional median internal robustness scores around 0.9, demonstrating highly consistent181
results even upon the exclusion of individual constituent studies.182

These rigorous stress tests validate that AWmeta’s adaptive weighting architecture endows the meta-analytic process with183
significantly strengthened stability and robustness. This reinforcement ensures the derivation of more dependable biological184
insights when integrating diverse and inherently heterogeneous transcriptomic datasets.185

AWmeta facilitates discovery of disease-relevant genes186
A pivotal determinant of a meta-analysis method’s utility is its capacity to prioritize genes of genuine pathological importance.187
To rigorously assess this, we quantified the biological relevance of gene rankings from AWmeta, REM, and the original studies188
(as baselines) against authoritative Parkinson’s and Crohn’s disease-gene benchmarks—compiled from DisGeNET, MalaCards,189
and an in-house curated genetic variation corpus—using a custom metric that integrates both statistical significance and effect190
size magnitude, which provides an objective and threshold-agnostic evaluation of gene prioritization performance (Fig. 5a and191
"Biological relevance assessment of gene differential quantification" section in Methods).192

Prior to assessing performance, we first validated the coherence of our benchmark gene sets, with overlap magnitude193
quantified using odds ratio (OR) and statistical significance determined by Fisher’s exact test. Pairwise comparisons revealed194
substantial overlaps among the three independent sources for both Parkinson’s disease (e.g., DisGeNET versus MalaCards,195
OR = 138.8, P = 5.1× 10−115) and Crohn’s disease (e.g., DisGeNET versus MalaCards, OR = 242.9, P = 1.3× 10−27)196
(Fig. 5b). This strong reciprocal consistency affirmed their utility for a reliable evaluation of biological relevance.197
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Our primary analysis revealed that AWmeta consistently generates more biologically meaningful gene rankings than REM198
and the baseline studies (P < 10−4,10−3,10−2 or 0.05, Nemenyi post-hoc test; Fig. 5c–e). Specifically, when benchmarked199
against our genetic variant corpus, AWmeta achieved significantly higher relevance scores across all interrogated tissues200
(Fig. 5c). This superior performance extended to the DisGeNET benchmark in critical disease tissues, including Parkinson’s201
substantia nigra and Crohn’s peripheral blood and ileal mucosa (Fig. 5d). A similar advantage was observed using the MalaCards202
benchmark for Parkinson’s substantia nigra and Crohn’s ileal and colonic mucosa (Fig. 5e). Notably, AWmeta’s superiority was203
particularly pronounced in the primary disease-affected tissues—Parkinson’s substantia nigra and Crohn’s ileal mucosa—where204
it surpassed baselines across all three independent benchmarks. Cumulatively, in 11 instances of the 15 tissue-benchmark205
comparisons (5 tissues × 3 benchmarks), AWmeta’s scores were significantly higher than those of both the baselines and REM.206
In stark contrast, REM failed to offer a significant improvement over baseline scores in 11 of 15 comparisons, underscoring its207
limited ability to distill new biological insights from existing data.208

These results establish that AWmeta’s gene prioritization is not merely a statistical refinement but a substantive improvement209
in biological fidelity. By more effectively elevating established disease-associated genes to the top of significance rankings,210
AWmeta provides a clearer and more accurate representation of the underlying pathology. This enhanced resolution positions211
AWmeta as a powerful discovery engine, capable of transforming heterogeneous transcriptomic datasets into a focused and212
mechanistically coherent view of disease processes.213

AWmeta enables disease tissue-specific mechanism interpretation214
We further implemented Gene Ontology (GO) enrichment to explore disease mechanism interpretation based on meta-analysis215
prioritized genes. To avoid arbitrariness, three thresholds (100, 300, and 500) were used to select the number of top integrated216
rank genes ("Biological relevance assessment of gene differential quantification" section in Methods). The enrichment ratio217
quantifies the degree to which GO terms are significantly enriched in relevant disease tissues:218

Enrichment ratio =
Gene ratio

Background ratio
(1)

where gene ratio is the proportion of genes annotated to a specific GO term within the top integrated rank genes, and background219
ratio represents the analogous fraction across a reference gene set. GO terms with higher enrichment ratios are more likely to220
be involved in a given disease tissue. For comparison, GO enrichments derived from original studies served as baselines.221

Compared with REM and baselines, representative GO terms enriched in AWmeta-derived top integrated rank genes222
consistently exhibited the highest enrichment ratios across nearly all five disease tissues (Fig. 5f), demonstrating AWmeta’s223
enhanced capacity for disease-relevant gene prioritization in tissue-specific contexts. In contrast, REM underperformed relative224
to some baselines (Fig. 5f), reflecting diminished biological relevance within its gene sets. For instance, biological processes225
related to synaptic organization and transmission ("synaptic transmission, dopaminergic", "regulation of synapse organization",226
and "distal axon") were significantly enriched in Parkinson’s substantia nigra, consistent with their known involvement in227
Parkinson’s pathogenesis25, 26. Likewise, "metal ion transmembrane transporter activity" and "regulation of membrane potential"228
were significantly enriched, highlighting their pivotal roles in Parkinson’s substantia nigra-involved mechanisms27–29. AWmeta229
achieved the highest enrichment for these GO terms, a trend robust across all thresholds. The enrichment ratios for AWmeta230
and some baselines monotonically decreased with more integrated rank genes included, indicating these term-related genes are231
concentrated at the very top of the ranked lists. Strikingly, REM-prioritized genes exhibited minimal or absent enrichment232
across all five representative GO terms, further underscoring its impaired capacity to capture contextual biological functions.233

Given the well-established inflammatory pathogenesis of Parkinson’s and Crohn’s disease in non-hematopoietic tissues30, 31,234
we hypothesized that blood-derived gene signatures would reflect systemic immune dysregulation and vascular barrier impair-235
ment at disease-relevant interfaces: Parkinson’s blood-brain barrier and Crohn’s intestinal vasculature. Peripheral blood analyses236
revealed significant enrichment of immune-related GO terms in Parkinson’s disease, including "MHC protein complex"32,237
"antigen binding"33, and "immunoglobulin complex". The circulatory specificity was further evidenced by "humoral immune238
response mediated by circulating immunoglobulin". Similarly, in Crohn’s peripheral blood, neutrophil-related GO terms ("neu-239
trophil degranulation", "neutrophil activation involved in immune response", "neutrophil mediated immunity", and "neutrophil240
activation") indicated the involvement of immune-inflammatory processes34. Furthermore, significant Parkinson’s "complement241
activation" and Crohn’s "blood coagulation" provided disease-specific vascular insights. Aberrant complement system activity242
may imply blood-brain barrier disruption in Parkinson’s patients35, 36, whereas increased venous thromboembolism risk in243
Crohn’s patients due to abnormal coagulation37 indicates intestinal vascular barrier impairment38.244

The ileal and colonic mucosa constitute primary pathological sites in Crohn’s disease31, where collagen plays a key role245
in extracellular matrix remodeling39, evidenced by the significant "collagen catabolic process". Gut microbiota dysbiosis,246
reflected by GO terms "antimicrobial humoral response" and "response to lipopolysaccharide", further aligned with Crohn’s247
pathogenesis40, 41. While Crohn’s ileal and colonic mucosa share multifaceted similarities, they displayed two key distinctions:248
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complement activation and digestion. Although both mucosal tissues showed complement activation, its enrichment ratios were249
2-4 times higher in ileal versus colonic mucosa, supported by immunofluorescence staining and single-cell transcriptomics250
indicating more active complement activation in ileal mucosa42, 43. It has been generally acknowledged the ileal mucosa251
uniquely mediates hydrolase-driven enzymatic digestion, whereas the colonic mucosa plays no substantive role in chemical252
digestion44. This functional dichotomy was corroborated by the enrichments of the "digestion" GO term: AWmeta specifically253
detected "digestion" within top 100 ileal mucosa genes (highest enrichment), whereas REM and baselines showed delayed254
identification (top 300/500 genes; lower enrichment); conversely, AWmeta consistently excluded "digestion" from colonic255
mucosa enrichments, in contrast to sporadic false positives by these counterparts. These functional stratifications demonstrate256
AWmeta’s enhanced biological fidelity in resolving disease tissue-contextual gene functions.257

Discussion258

Transcriptomic meta-analysis is pivotal for distilling robust biological insights from heterogeneous gene expression studies; yet,259
existing frameworks remain confined to either P-value combination or effect-size integration, imposing a trade-off between260
statistical sensitivity and quantitative fidelity. A unified strategy that seamlessly integrates both paradigms—capitalizing on261
their complementary strengths while circumventing their individual limitations—has therefore been a long-standing, unmet262
imperative.263

AWmeta represents the first successful integration of P-value and effect-size aggregation methodologies in transcriptomic264
meta-analysis. The core innovation—a cross-module information transfer where optimized weights from P-value calculations265
directly enhance effect size estimation—effectively addresses between-study heterogeneity while maximizing consistent266
biological signal extraction. Indeed, the substantial variability often observed between studies, visually apparent in metrics like267
gene-wise convergence (Fig. 2b–f with per-study skewed distributions), highlights the prevalence of such heterogeneity and268
strongly supports the usage of random-effects-like frameworks such as AWmeta and REM over simpler fixed-effects models45.269
In our comprehensive evaluation across 35 datasets from Parkinson’s and Crohn’s disease, AWmeta demonstrated superior270
high-fidelity DEG detection that remained robust under substantial experimental noise (Fig. 1c,g–i and Extended Data Fig. 2–5).271
This enhanced discrimination capacity enabled identification of subtle yet biologically meaningful expression changes that272
conventional methods frequently miss, substantially improving the reliability and reproducibility of transcriptomic discoveries.273

Our convergence metrics revealed AWmeta’s practical advantages in approximating theoretical true values at both gene and274
study levels. It’s noteworthy that in our gene-wise convergence assessments, some original studies occasionally outperformed275
standard REM, even without larger sample sizes (Fig. 2b–f and Extended Data Fig. 6). While not conclusive, this hints that276
inherent study quality or specific experimental contexts might significantly influence reliability, perhaps as much as sample277
size itself. We also observed a tendency for these well-performing studies to utilize RNA-seq technology. These observations278
underscore the complexity of integrating diverse datasets and highlight the benefit of AWmeta’s adaptive capability which279
weights studies based on informational content rather than relying solely on metrics like sample size. AWmeta achieved280
equivalent study-wise convergence with significantly fewer samples and DEGs than conventional methods—a critical advantage281
in resource-constrained research environments that can substantially reduce experimental costs and researcher workload.282

The superior biological relevance of AWmeta’s findings was rigorously established through two orthogonal and comple-283
mentary assessment paradigms: (1) Using authoritative disease-specific gene sets from DisGeNET, MalaCards, and in-house284
genetic variant corpus, AWmeta demonstrated significantly enhanced biological meaningfulness. In 11 of 15 tissue-benchmark285
combinations, AWmeta outperformed both REM and original studies in biological relevance scoring (Fig. 5c–e). This consistent286
advantage provides researchers with more accurate representations of core disease pathways and creates unprecedented oppor-287
tunities for discovering novel pathophysiological relationships that remain obscured in conventional analyses. (2) Longitudinal288
tracking of GO term enrichment across gene rank thresholds revealed AWmeta’s unique capacity to concentrate functionally289
critical genes within leading ranks. While terms of secondary importance (e.g., "MHC protein complex", "blood coagulation")290
showed delayed enrichment beyond top 300 ranks across all methods (Fig. 5f), pathologically central functions exhibited291
exclusive early enrichment in AWmeta. Crucially, terms like "digestion" in Crohn’s ileal mucosa reached peak enrichment292
exclusively within AWmeta’s top 100 genes (Fig. 5f), with no detection at expanded thresholds; REM failed to detect this293
pivotal function at both top 100 and 300 thresholds, achieving only marginal detection at top 500 (Fig. 5f)—demonstrating its294
fundamental limitations in biological resolution. This enrichment trajectory analysis establishes a dual-purpose paradigm for295
quantitatively evaluating gene prioritization performance and objectively stratifying biological mechanisms by pathological296
centrality. Together, these orthogonal validation strategies—leveraging curated knowledgebases and temporal enrichment297
dynamics—provide compelling evidence that AWmeta uniquely reconciles statistical rigor with biological fidelity, transforming298
heterogeneous transcriptomic data into precisely stratified mechanistic insights.299

While AWmeta represents a significant advance, several aspects warrant consideration for broader application. The method’s300
computational complexity, though tractable for typical multi-study analyses, may require optimization for emerging consortia-301
level datasets exceeding 100 studies. Performance is also intrinsically linked to input data quality; while adaptive weighting302
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mitigates variable study quality (Fig. 2b–f and Extended Data Fig. 6), unaddressed technical artifacts (e.g., severe batch effects)303
could subtly influence results. Furthermore, the current framework focuses on gene-level differential quantification; extension304
to isoform-resolution or splicing analysis would require adaptation to handle increased dimensionality. Finally, scenarios305
involving extreme, systematic confounding across studies (e.g., irreconcilable patient stratification) remain challenging—a306
limitation pervasive among meta-analytic methods.307

These considerations highlight clear pathways for AWmeta’s evolution, complementary to its core strengths. Algorithmic308
refinements such as distributed computing could enhance scalability for ultra-large-scale integrations. Furthermore, incorporat-309
ing tissue-specific molecular networks or multi-omic layers (e.g., epigenomics, proteomics) would refine biological inference310
beyond expression-centric views. Notably, coupling AWmeta with pharmacological databases holds significant promise for311
in silico drug target prioritization and biomarker discovery. The framework also uniquely empowers researchers to integrate312
limited-scale local datasets with public repositories, democratizing access to robust meta-analysis and amplifying statistical313
power for domain investigations.314

Crucially, the present AWmeta implementation already delivers immediate, high-impact utility. It establishes a robust315
new standard for extracting reliable biological signals from complex, heterogeneous transcriptomic data—overcoming a316
fundamental methodological dichotomy that has long constrained the field. By synergistically combining P-value and effect317
size paradigms, AWmeta enhances reproducibility and biological interpretability, directly accelerating the translation of318
transcriptomic discoveries into clinical insights and biotechnological applications. This methodological leap provides an319
integral tool for navigating the growing complexity of precision transcriptomic integration in biomedical research.320
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Methods321

Overview of the AWmeta framework322
The transformative potential of AWmeta stems from its adaptively weighting scheme, which strategically prioritizes the most323
informative studies while robustly mitigating noise and outliers to yield biologically coherent, high-fidelity meta-analytic324
estimates. This framework performs gene-by-gene meta-analysis of heterogeneous transcriptomic studies by integrating325
per-study gene summary statistics (Fig. 1a). For each gene, input from each study in the valid set (Sgene) comprises: (1) a326
P-value (Pi), (2) a log2-based fold change (FCi), and (3) its corresponding within-study variance (Vari), all derived from the327
original gene differential quantification analyses. AWmeta consists of two sequential modules: AW-Fisher for adaptive P-value328
aggregation and AW-REM for adaptive effect-size integration. Studies absent from Sgene (e.g., Study2 with missing P2, FC2, or329
Var2) are excluded a priori.330

AW-Fisher module (adaptive P-value integration)331
Within this module, each gene’s meta P-value is obtained by selecting an optimal subset of Sgene that minimizes a weighted332
Fisher’s statistic-derived combined P-value9. Let N′ = |Sgene| be the number of studies reporting P-values for the gene,333

with S′gene = {1, . . . ,N′} enumerating the study indices, and denote their P-values by
−→
P = (P1, . . . ,Pi)i∈S′gene

∈ (0,1)N′
. The334

corresponding binary weight vector, −→w = (w1, . . . ,wi)i∈S′gene
∈ {0,1}N′

, indicates inclusion (wi = 1) or exclusion (wi = 0) of335
Studyi ∈ Sgene in the final subset. The AW-Fisher statistic is defined as:336

T (
−→
P ;−→w ) =−2 ∑

i∈S′gene

wi lnPi (2)

The significance level of T (
−→
P ;−→w ) under the null hypothesis is calculated using the chi-squared distribution:337

L(T (
−→
P ;−→w )) = 1−F

χ2
d(−→w )

(T (
−→
P ;−→w )) (3)

where the degrees of freedom are d(−→w ) = 2∑i∈S′gene
wi, and F

χ2
d
(·) is the cumulative distribution function of the chi-squared338

distribution with d degrees of freedom.339
The meta P-value, s(

−→
P ), is the minimum significance level obtained by optimizing the weight vector over the studies in340

Sgene:341

s(
−→
P ) = min−→w

L(T (
−→
P ;−→w )) (4)

The optimal weight vector ŵww that achieves this minimum is determined by:342

ŵww = w(
−→
PPP ) = argmin

−→w
L(T (

−→
P ;−→w )) = (ŵ1, . . . , ŵi)i∈S′gene

(5)

This optimal weight vector ŵww, containing binary weights for each study in Sgene, is passed to the following AW-REM module.343

AW-REM module (adaptive effect-size integration)344
This module calculates the meta effect size (log2FC) using an adaptively-weighted REM. It leverages the log2FC (FCi) and345
within-study variance (Vari) from studies in Sgene, modulated by the optimal binary weights ŵww derived from the AW-Fisher346
module for those same studies. The contribution weight for Studyi ∈ Sgene in AW-REM is defined as:347

Wi =
ŵi

Vari +T 2 (6)

where ŵi is the binary weight (0 or 1) for Studyi ∈ Sgene from Eq. 5. Vari is the within-study variance for the gene in Studyi,348
and T 2 represents the between-study variance, estimated using restricted maximum likelihood (REML) method46. Wi is zero349
whenever ŵi = 0, thus automatically omitting studies not selected by AW-Fisher module.350

The final meta fold change, denoted M, is computed as an adaptively calibrated average of the study-wise effect sizes:351

M =
∑i∈S′gene

WiFCi

∑i∈S′gene
Wi

(7)

This formulation delivers a consensus fold-change estimate both statistically rigorous and quantitatively faithful to the most352
informative subsets of heterogeneous studies.353
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Transcriptomic datasets354
To proof-of-concept the AWmeta framework, we compiled 35 publicly available human transcriptomic datasets for Parkinson’s355
and Crohn’s disease from the Gene Expression Omnibus (GEO)47, Sequence Read Archive (SRA)48, and ArrayExpress49.356
These datasets, encompassing both microarray and RNA-sequencing (RNA-seq) platforms, included samples derived from357
Parkinson’s substantia nigra50–57 and peripheral blood53, 58–65, Crohn’s peripheral blood66–68, ileal mucosa69–74 and colonic358
mucosa73–79. A complete list of the datasets, detailing data accession IDs, sequencing platform identifiers, dataset and tissue359
sources, and patient and control sample sizes, is provided in Extended Data Fig. 1.360

Transcriptomic data preprocessing361
Due to the inclusion of datasets generated on different platforms, specific preprocessing pipelines were applied separately to362
microarray and RNA-seq data.363

Microarray data processing364
To ensure accurate and up-to-date probe annotations, microarray probe identifiers were mapped to Entrez Gene IDs using365
information retrieved from GEO SOFT files, platform-specific Bioconductor annotation packages, and the AnnoProbe R366
package. For genes represented by multiple probes, we retained the probe with the largest interquartile range (IQR) of intensities367
across samples to maximize biological informativeness21, 80. Subsequently, the limma R package81 was utilized for microarray368
data preprocessing, normalization, and differential gene identification. Gene differential quantification (case versus control)369
within each study was determined via empirical Bayes moderated t-statistics, yielding per-gene Pi, FCi, and Vari.370

RNA-seq data processing371
RNA-seq data were processed through an automated snakemake workflow82. Raw sequencing reads were processed with372
Trimmomatic83 to remove adapter sequences and low-quality bases. Following best practice recommendations84, the cleaned373
reads were aligned to the human reference genome (GRCh38 assembly) using HISAT285. Gene-level read counts were374
quantified from the aligned reads using featureCounts86. Finally, we performed gene differential quantification with DESeq287,375
producing per-gene Pi, FCi, and Vari for each study.376

Transcriptomic meta-analysis evaluation metrics377
To impartially evaluate AWmeta’s performance advances, we conducted a multi-dimensional comparison against the current378
gold-standard REM method6, 21, 22 across the following critical analytical domains: (i) DEG detection capability, (ii) DEG379
discrimination, (iii) gene- and study-wise gene differential quantification convergence, (iv) stability and robustness, and (v)380
biological relevance. Both methods operated on matching inputs and identical gene sets, ensuring an equitable performance381
assessment.382

DEG detection capability evaluation383
DEG detection capability is defined as the gene count satisfying pre-defined thresholds for both corrected statistical significance384
P-value (FDR) and fold change magnitude (|log2FC|) (Fig. 1b). To assess the stability and reliability of this capability, we385
implemented a bootstrap resampling strategy with 100 iterations. In each iteration, we created bootstrapped datasets by386
randomly sampling with replacement from the original case and control groups while maintaining the original sample sizes,387
followed by meta-analysis. The resulting DEG counts formed a distribution for statistical comparison with one-tailed Welch’s388
t-test.389

DEG discrimination evaluation using semi-synthetic simulation strategy390
To evaluate the ability to discriminate between DEGs and non-DEGs, particularly considering potential false positives arising391
from higher detection sensitivity, we adopted an evaluation metric based on semi-synthetic simulated data, inspired by Li and392
colleagues23. This approach consisted of benchmark dataset generation and evaluation using datasets with simulated noise393
(Fig. 1d–f) and for each tissue context:394

1. Identify the intersection of DEGs and non-DEGs called by both AWmeta and REM under predefined screening thresholds395
(Fig. 1d).396

2. Randomly sample half of the intersected DEGs to form an unbiased positive benchmark; sample an equal-sized negative397
benchmark from the intersected non-DEGs (Fig. 1d).398

3. Construct semi-synthetic datasets by permuting case/control labels within a subset of original studies (e.g., Study1 and399
Study3; Fig. 1e). Label permutation removes true signal from those studies.400

4. Apply AWmeta and REM to the combined set of original and label-permuted studies; compute the AUROC and AUPRC401
over the previously defined positive and negative benchmark genes (Fig. 1e).402
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5. Repeat Steps 3 and 4 for 100 times to obtain distributions of AUROC and AUPRC, summarizing performance under403
minimum-, median-, and maximum-permuted scenarios (Fig. 1f), which ensures the stability and reliability of our404
assessment. Statistical significance between AWmeta and REM was tested via one-tailed Mann–Whitney test.405

Gene-wise convergence assessment for gene differential quantification406
To assess per-gene differential quantification agreement between meta-analysis (FCmeta) and original constituent studies (FCi),407
we computed a MAD-like gene-wise convergence score (Fig. 2a). For each gene G :408

CG meta =
1

|Sgene| ∑
i∈S′gene

|FCmeta −FCi| (8)

where Sgene and S′gene denote the valid study set and corresponding indices for the gene (defined in "Overview of the AWmeta409
framework" section), |Sgene| the cardinality of the set Sgene, FCmeta = M from Eq. 7 and FCi is the study-exclusive log2-based410
fold change. A lower CG meta implies better agreement between the meta-analysis and original study estimates within Sgene. For411
baseline comparison, we also computed, for each original Study j ∈ Sgene, a gene-wise convergence score:412

CG j =
1

|Sgene| ∑
i∈S′gene

|FC j −FCi| (9)

which represents the MAD of Study j’s fold change from all other contributing studies. This internal consistency benchmark413
enables direct contrast of AWmeta’s and REM’s convergence performance against the inherent agreement among the original414
datasets. All comparisons used one-tailed Mann–Whitney test against AWmeta.415

Study-wise convergence assessment for gene differential quantification416
To rigorously evaluate the consistency between gene lists derived from meta-analysis methods and those from the original417
studies, we employed three complementary approaches. For all metrics, higher scores indicate superior study-level convergence.418

1. Adjusted rankeD genE (DE) list similarity: Our first approach quantifies concordance using a rank-sensitive similarity419
metric that is critically weighted towards top-ranked genes (Fig. 2g and Extended Data Fig. 7). To construct robustly420
ordered gene lists (Gmeta for the meta-analysis; Gi for Studyi), we first devised a composite rank for each gene by421
multiplying its P-value rank (ascending) with its |log2FC| rank (descending), thereby integrating statistical significance422
and effect size.423

The weighted similarity S(Gmeta,Gi) between the meta-analysis and each original study gene lists (containing N genes)424
was computed using a non-linear weighting scheme88, which emphasizes the top-ranked gene concordance:425

S(Gmeta,Gi) =
N

∑
n=1

e−αnOn(Gmeta,Gi) (10)

where On(Gmeta,Gi) is the number of common genes in the top n positions and α is a weighting exponent (0.001). This426
score was then normalized to the interval [−1,1]22 yielding the adjusted similarity:427

Sad j(Gmeta,Gi) =
S(Gmeta,Gi)−Enull(S(Gmeta,Gi))

max(S(Gmeta,Gi))−Enull(S(Gmeta,Gi))
(11)

where Enull(S(Gmeta,Gi)) = ∑
N
n=1

n2

N e−αn and max(S(Gmeta,Gi)) = ∑
N
n=1 ne−αn are the expected and maximum scores428

under a null hypothesis of random gene lists.429

2. Set-based overlap similarity: To circumvent the limitations of the above rank-dependent approach, which is sensitive to430
gene ranking variations while potentially overlooking consistent differential expression patterns, we assessed study-wise431
convergence using a set-based overlap metric that exclusively evaluates binary DEG classification concordance (Fig. 2h,i).432
Here, DEG sets were determined for both the meta-analysis (Setmeta) and individual studies (Seti) using predefined433
statistical thresholds, thereby focusing analytical power on reproducible differential expression status irrespective of434
positional gene rankings.435

We calculated two complementary metrics: JC (JCi = |Setmeta ∩ Seti|/|Setmeta ∪ Seti|) and OC (OCi = |Setmeta ∩436
Seti|/min(|Setmeta|, |Seti|)). The convergence metric for the meta-analysis relative to Studyi was the arithmetic mean437
(JCi +OCi)/2.438
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3. Phi coefficient similarity: Finally, we measured the association between DEG classifications using phi coefficient24 (φ )439
(Fig. 2h,j). This approach considers the extreme case where shared DEGs or non-DEGs between two gene sets might be440
randomly generated.441

For each comparison between the meta-analysis and an original Studyi, we constructed a 2×2 contingency table442
categorizing all genes as DEG or non-DEG in both datasets and the phi coefficient (φi) was then calculated as:443

φi =
n11n22 −n12n21√

n1·n2·n·1n·2
(12)

where n11 represents DEGs, n22 non-DEGs in both datasets, and n12 and n21 represent exclusively-classified DEGs for444
the binary datasets. The row and column sums are denoted by n1·, n2·, n·1, and n·2.445

To establish a performance baseline, we computed all three convergence metrics for every pairwise combination of the446
original studies. Overall study-wise convergence differences among AWmeta, REM and baselines were tested by Kruskal–Wallis447
test, followed by Nemenyi post-hoc test for pairwise comparisons.448

For the set-based and φ metrics, which rely on binary DEG and non-DEG classification, we note that these outcomes are449
mutually exclusive and complementary, and therefore report the results derived from the DEG sets for clarity and conciseness.450

Stability and robustness assessment of transcriptomic integration451
To demonstrate AWmeta’s resilience, we evaluated both stability—against stochastic sampling—and robustness—against dataset452
perturbations—using the adjusted DE list similarity ("Study-wise convergence assessment for gene differential quantification"453
section and Extended Data Fig. 7).454

1. Within-study subsampling stability: For each original cohort, we randomly partitioned case and control samples of455
every study into two equal subcohorts, yielding paired “half-study” datasets. Each half-study set underwent independent456
DEG analysis and subsequent meta-analysis. The similarity between the resulting ordered gene lists was computed457
over 100 bootstrap replicates, quantifying stability under within-study sampling (Fig. 4a). AWmeta and REM stability458
distributions were compared via one-tailed Welch’s t-test.459

2. External robustness: We assessed resilience to new data by sequentially incorporating one independent external study460
(from a held-out pool) into the original meta-analysis (Fig. 4c). For each addition, we performed meta-analysis pre- and461
post-inclusion, then computed adjusted DE list similarity between resulting ordered gene lists, measuring the impact of462
disparate external data (AWmeta versus REM, one-tailed Mann–Whitney test).463

3. Internal robustness: We evaluated sensitivity to study omission by performing leave-one-study-out analyses (Fig. 4e):464
each original study was removed in turn, and meta-analyses were rerun on the reduced datasets. The similarity between465
each leave-one-study-out and the full-cohort ranked gene lists, across all iterations, quantified internal robustness466
(AWmeta versus REM, one-tailed Mann–Whitney test).467

Biological relevance assessment of gene differential quantification468
To quantify disease-context relevance of gene differential quantification, we assembled benchmark gene sets for Parkinson’s and469
Crohn’s disease from three sources: (1) DisGeNET89 with gene-disease association (GDA) score > 0.290, 91, (2) MalaCards92,470
and (3) our in-house curated disease-related genetic variation corpus (will release soon). For reference comparisons, original471
study-derived biological relevance results serve as baselines.472

For each method (AWmeta, REM or baselines), all analyzed genes were ranked twice—(i) by descending |log2FC|, (ii) by473
ascending P-value—then each benchmark gene’s ranks were multiplied:474

Integrated Rank = Rank|log2FC|×RankP-value (13)

Benchmark genes were then re-ranked according to this Integrated Rank (ascending) to obtain RankIntegrated Rank. The Biological475
Relevance score was calculated for each benchmark gene as:476

Biological Relevance = 1−
RankIntegrated Rank

N
(14)

where N is the size of gene list from AWmeta, REM or baselines. Higher scores reflect greater biological relevance, signifying477
that benchmark genes attain superior rankings through combining statistical significance and fold change (Fig. 5a). This478
rank-based score accounts for gene list size heterogeneity and avoids arbitrary DEG thresholds. We compared biological479
relevance distributions from AWmeta, REM and baselines using Kruskal-Wallis and Nemenyi post-hoc test.480
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Data availability481

All transcriptomic datasets used in this study are publicly available via GEO, SRA, and ArrayExpress. Parkinson’s disease data482
include substantia nigra (GEO accessions: GSE114517, GSE8397, GSE20163, GSE20164, GSE20292, GSE7621,483
GSE49036, GSE42966, GSE43490, GSE26927, GSE54282) and peripheral blood (GEO accessions: GSE57475,484
GSE54536, GSE34287, GSE99039, GSE72267, GSE6613, GSE18838, GSE165082). Crohn’s disease datasets include485
peripheral blood (GEO accessions: GSE119600, GSE112057, GSE94648), ileal mucosa (GEO accessions: GSE102133,486
GSE75214, GSE16879, GSE68570, GSE101794, GSE57945), and colonic mucosa (GEO accessions: GSE75214,487
GSE16879, GSE36807, GSE4183, GSE9686, GSE66207; ArrayExpress accession: E-MTAB-184). Benchmark gene488
sets for both diseases were retrieved from DisGeNET (https://www.disgenet.com/) and MalaCards (https:489
//www.malacards.org/).490

Code availability491

AWmeta is available on GitHub at https://github.com/YanshiHu/AWmeta.492
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Fig. 1 | Overview of AWmeta and DEG identification evaluation. a, Schematic of the AWmeta framework, comprising the
AW-Fisher module for P-value calculation and the AW-REM module for effect size (log2-transformed fold change) estimation.
DEG identification evaluation includes DEG detection capability (b, c) and discrimination (d–i). b, Schematic defining DEG
detection capability as the number of DEGs identified by predefined statistical significance (P-value) and gene expression
fold change (log2-based) thresholds. c, DEG detection capability performance comparisons between AWmeta and REM
with corrected P-value (FDR) < 0.01 and fold change (|log2FC|) > log21.2 across five disease tissues. Statistical significance
was determined with one-tailed Welch’s t-test. d, Strategy for generating the semi-synthetic benchmark dataset, sampling
equivalent DEGs and non-DEGs from common genes identified by both AWmeta and REM. e, Workflow for evaluating
DEG discrimination performance using sample label permutation within the semi-synthetic benchmark dataset, followed by
AWmeta/REM procedure and AUROC/AUPRC calculation. f, Study permutation statistics (number of permuted studies) in
the DEG discrimination evaluation procedure across five disease tissues. g–i, DEG discrimination performance comparisons
between AWmeta and REM using minimum- (g), median- (h), and maximum- (i) permuted semi-synthetic simulation strategy
with FDR < 0.01 and |log2FC| > log21.2 across five disease tissues. Statistical significance was determined using one-tailed
Mann-Whitney test (g–i). Textual details of the AWmeta framework, DEG detection capability, and minimum-, median-
and maximum-permuted semi-synthetic simulation strategies for DEG discrimination, reside in "DEG detection capability
evaluation" and "DEG discrimination evaluation using semi-synthetic simulation strategy" sections in Methods. Boxplot bounds
indicate interquartile ranges (IQR), centers denote median values, and whiskers extend to 1.5×IQR. The following icons
represent different tissue sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Fig. 2 | AWmeta establishes superior gene- and study-wise convergence in gene differential quantification. To benchmark
meta-analysis efficacy across biological scales, we assessed gene differential quantification convergence in gene- (a–f) and
study- (g–m) wise manners. a–f, For gene-wise convergence, mean absolute deviation (MAD) -like similarity measure was
utilized to quantify the per-gene fold change (|log2FC|) similarity among AWmeta, REM and original studies (a), with smaller
value indicating better convergence, which demonstrates AWmeta’s superior gene-wise convergence over REM and orignal
studies across five disease tissues: Parkinson’s substantia nigra (b) and peripheral blood (c), and Crohn’s peripheral blood
(d), ileal mucosa (e) and colonic mucosa (f). Statistical significance against AWmeta for gene-wise convergence comparisons
was determined by one-tailed Mann-Whitney test. g–m, Three complementary similarities, i.e., adjusted DE list similarity
(g, conceptual schematic; k, assessment result), the arithmetic average of Jaccard (JC) and overlap coefficient (OC) (h,
i, conceptual schematic; l, assessment result) and phi coefficient (PC) (h, j, conceptual schematic; m, assessment result),
were used to derive study-wise convergence score, indicating AWmeta exerts better convergence than REM and baselines
in five disease tissues with FDR < 0.05 and |log2FC| > log21.2. For comparison purpose, results from original studies serve
as reference baselines. Overall study-wise convergence differences among AWmeta, REM and baselines were tested with
Kruskal–Wallis test, followed by Nemenyi post-hoc test for pairwise comparisons. Detailed description for MAD-like gene-
and three study-wise convergence similarity measures can be referred to in "Gene-wise convergence assessment for gene
differential quantification" and "Study-wise convergence assessment for gene differential quantification" sections in Methods
and Extended Data Fig. 7. Boxplot bounds show interquartile ranges (IQR), centers indicate median values, and whiskers
extend to 1.5×IQR. The following icons represent different tissue sources: : substantia nigra; : peripheral blood; : ileal
mucosa; : colonic mucosa. 19/32



Fig. 3 | AWmeta attains accelerated meta-analysis convergence with reduced samples and DEGs. a–f, We dissected
the correlations of per-study sample size and DEG number with study-wise convergence measured by three complementary
similarities, i.e., adjusted DE list similarity (a, d), the arithmetic average of Jaccard (JC) and overlap coefficient (OC) (b, e) and
phi coefficient (PC) (c, f) across five disease tissues, showcasing AWmeta’s accelerated study-wise meta-analysis convergence
against REM with fewer samples and DEGs, in which non-linear correlations were quantified by spearman’s rho with two-tailed
significance test. To enhance statistical power and mitigate threshold sensitivity, this correlation analysis summarized results
from nine different DEG threshold combinations, spanning varying significance levels (0.01, 0.05 and 0.10) and fold change
cutoffs (log21.2, log21.5 and log22.0), for both the average of JC and OC and PC similarity measures. Detailed description for
these three study-wise convergence similarity measures can be referred to in "Study-wise convergence assessment for gene
differential quantification" section in Methods, Fig. 2g–j and Extended Data Fig. 7. The following icons represent different
tissue sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Fig. 4 | AWmeta delivers remarkable stability and robustness in transcriptomic integration. a, Workflow for evaluating
the stability of transcriptomic integration. b, Stability assessment against AWmeta and REM with one-tailed Welch’s t-test.
c–f, We assessed robustness against external interference (c, conceptual schematic; d, assessment result) and internal defects
(e, conceptual schematic; f, assessment result) in transcriptomic integration across five disease tissues, with one-tailed Mann-
Whitney test, indicating AWmeta’s superior performance over REM. Detailed description of adjusted DE list similarity measure
can be referred to in "Study-wise convergence assessment for gene differential quantification" section in Methods and Extended
Data Fig. 7. Boxplot bounds show interquartile ranges (IQR), centers indicate median values, and whiskers extend to 1.5×IQR.
The following icons represent different tissue sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic
mucosa.
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Fig. 5 | AWmeta enhances identification and mechanism interpretation of disease tissue-specific genes. a, Workflow
for quantifying gene-wise biological relevance against three benchmark gene sets of Parkinson’s and Crohn’s disease from
genetic association (GA) variation corpus, DisGeNET and MalaCards, with higher scores indicating stronger tissue-contextual
disease associations. b, Pairwise coherence analysis of the three benchmark gene sets for Parkinson’s and Crohn’s disease.
The degree of overlap between benchmarks was quantified using odds ratios (OR), with statistical significance determined by
Fisher’s exact test. c–e, Biological relevance evaluations on AWmeta (red), REM (blue) and baselines (green) against GA (c),
DisGeNET (d) and MalaCards (e) benchmarks, where higher scores (y-axis) denote enhanced biological relevance. Original
study-derived biological relevance results serve as reference baselines. We assessed overall differences in biological relevance
scores using Kruskal-Wallis test, with Nemenyi post-hoc test for pairwise comparisons (AWmeta versus REM, AWmeta versus
baseline, and REM versus baseline). Boxplot bounds indicate interquartile ranges (IQR), centers denote median values, and
whiskers extend to 1.5×IQR. f, Dynamic GO enrichment trajectories across top-ranked (100, 300 and 500) genes identified
by AWmeta (red), REM (blue) and baselines (green), with higher enrichment ratio (y-axis) indicating stronger disease-tissue
involvement. Original study-derived enrichments serve as baselines. Connected lines visualize trajectory patterns across gene
rank thresholds (x-axis). Textual details of the biological relevance assessment framework and detailed definition of enrichment
ratio, reside in "Biological relevance assessment of gene differential quantification" section in Methods and "AWmeta enables
disease tissue-specific mechanism interpretation" section in Results. The following icons represent different tissue sources: :
substantia nigra; : Peripheral blood; : ileal mucosa; : colonic mucosa.
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Extended Data Fig. 1 | Overview of transcriptomic datasets for Parkinson’s and Crohn’s disease. Datasets for Parkinson’s
disease (PD) include substantia nigra50–57 and peripheral blood53, 58–65. Crohn’s disease (CD) datasets comprise ileal mu-
cosa69–74, colonic mucosa73–79, and peripheral blood66–68. Detailed metadata include data accession IDs, sequencing platform
identifiers, dataset and tissue sources, and patient and control sample sizes. The following icons represent different tissue
sources: : substantia nigra (SN); : peripheral blood; : ileal mucosa (IM); : colonic mucosa (CM).
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Extended Data Fig. 2 | DEG detection capability evaluation across five disease tissues and diverse thresholds. a–e, DEG
detection capability (the number of identified DEGs) was assessed against AWmeta and REM using nine distinct thresholds,
combining three corrected P-values (FDR) (0.01, 0.05, and 0.10) and three log2-based fold change (|log2FC|) cutoffs (log21.2,
log21.5, and log22.0), spanning Parkinson’s substantia nigra (a), Parkinson’s (b) and Crohn’s (c) peripheral blood, and Crohn’s
ileal (d) and colonic (e) mucosa. Detailed description of DEG detection capability can be referred to in "DEG detection
capability evaluation" section in Methods and Fig. 1b. Statistical significance was determined using one-tailed Welch’s t-test.
Boxplot bounds show interquartile ranges (IQR), centers indicate median values, and whiskers extend to 1.5×IQR. The
following icons represent different tissue sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Extended Data Fig. 3 | DEG discrimination evaluation across five disease tissues using minimum-permuted semi-
synthetic simulation strategy. a–e, DEG discrimination (AUROC and AUPRC) was assessed against AWmeta and REM using
nine distinct thresholds, combining three corrected P-values (FDR) (0.01, 0.05, and 0.10) and three log2-based fold change
(|log2FC|) cutoffs (log21.2, log21.5, and log22.0), spanning Parkinson’s substantia nigra (a), Parkinson’s (b) and Crohn’s (c)
peripheral blood, and Crohn’s ileal (d) and colonic (e) mucosa. Detailed description of minimum-permuted semi-synthetic
simulation strategy can be referred to in "DEG discrimination evaluation using semi-synthetic simulation strategy" section in
Methods, "AWmeta secures robust higher-fidelity DEG identification across transcriptomic contexts" section in Results and
Fig. 1d–f. Statistical significance was determined using one-tailed Mann-Whitney test. Boxplot bounds show interquartile
ranges (IQR), centers indicate median values, and whiskers extend to 1.5×IQR. The following icons represent different tissue
sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Extended Data Fig. 4 | DEG discrimination evaluation across five disease tissues using median-permuted semi-synthetic
simulation strategy. a–e, DEG discrimination (AUROC and AUPRC) was assessed against AWmeta and REM using nine
distinct thresholds, combining three corrected P-values (FDR) (0.01, 0.05, and 0.10) and three log2-based fold change (|log2FC|)
cutoffs (log21.2, log21.5, and log22.0), spanning Parkinson’s substantia nigra (a), Parkinson’s (b) and Crohn’s (c) peripheral
blood, and Crohn’s ileal (d) and colonic (e) mucosa. Detailed description of median-permuted semi-synthetic simulation
strategy can be referred to in "DEG discrimination evaluation using semi-synthetic simulation strategy" section in Methods,
"AWmeta secures robust higher-fidelity DEG identification across transcriptomic contexts" section in Results and Fig. 1d–f.
Statistical significance was determined using one-tailed Mann-Whitney test. Boxplot bounds show interquartile ranges (IQR),
centers indicate median values, and whiskers extend to 1.5×IQR. The following icons represent different tissue sources: :
substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Extended Data Fig. 5 | DEG discrimination evaluation across five disease tissues using maximum-permuted semi-
synthetic simulation strategy. a–e, DEG discrimination (AUROC and AUPRC) was assessed against AWmeta and REM using
nine distinct thresholds, combining three corrected P-values (FDR) (0.01, 0.05, and 0.10) and three log2-based fold change
(|log2FC|) cutoffs (log21.2, log21.5, and log22.0), spanning Parkinson’s substantia nigra (a), Parkinson’s (b) and Crohn’s (c)
peripheral blood, and Crohn’s ileal (d) and colonic (e) mucosa. Detailed description of maximum-permuted semi-synthetic
simulation strategy can be referred to in "DEG discrimination evaluation using semi-synthetic simulation strategy" section in
Methods, "AWmeta secures robust higher-fidelity DEG identification across transcriptomic contexts" section in Results and
Fig. 1d–f. Statistical significance was determined using one-tailed Mann-Whitney test. Boxplot bounds show interquartile
ranges (IQR), centers indicate median values, and whiskers extend to 1.5×IQR. The following icons represent different tissue
sources: : substantia nigra; : peripheral blood; : ileal mucosa; : colonic mucosa.
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Extended Data Fig. 6 | AWmeta establishes superior DEG-wise convergence in gene differential quantification. a–e,
Considering that DEGs instead of non-DEGs are primarily involved in disease etiology, to explore whether gene- (unfiltered)
and DEG-wise convergence assessment results are different, mean absolute deviation (MAD) -like similarity measure was
utilized to quantify the per-DEG fold change (|log2FC|) similarity among AWmeta, REM and original studies, with smaller
values indicating better convergence, which demonstrates AWmeta’s consistent superior DEG- with gene-wise convergence
over REM and orignal studies using nine distinct thresholds, combining three corrected P-values (FDR) (0.01, 0.05, and 0.10)
and three log2-based fold change (|log2FC|) cutoffs (log21.2, log21.5, and log22.0), across five disease tissues: Parkinson’s
substantia nigra (a), Parkinson’s (b) and Crohn’s (c) peripheral blood, and Crohn’s ileal (d) and colonic (e) mucosa. For
comparison purpose, results from original studies serve as reference baselines. Statistical significance of REM and baselines
against AWmeta for DEG-wise convergence comparisons was tested with one-tailed Mann-Whitney test. Detailed description
for MAD-like DEG-wise convergence similarity measure can be referred to in "Gene-wise convergence assessment for gene
differential quantification" section in Methods, "AWmeta establishes superior gene- and study-wise convergence in gene
differential quantification" section in Results and Fig. 2a. Boxplot bounds show interquartile ranges (IQR), centers indicate
median values, and whiskers extend to 1.5×IQR. The following icons represent different tissue sources: : substantia nigra; :
peripheral blood; : ileal mucosa; : colonic mucosa.

Extended Data Fig. 7 | Conceptual schematic of adjusted DE list similarity measure. The methodological details reside in
"Study-wise convergence assessment for gene differential quantification" section in Methods.
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Extended Data Fig. 8 | AWmeta maintains robust superior study-wise convergence in gene differential quantification
across diverse thresholds. a–j, To dissect whether set-theory-based similarity-derived study-wise convergence assessment
results vary with diverse DEG thresholds, we used nine distinct thresholds, combining three corrected P-values (FDR) (0.01,
0.05, and 0.10) and three log2-based fold change (|log2FC|) cutoffs (log21.2, log21.5, and log22.0), to benchmark study-wise
convergence, which showcases AWmeta maintains robust superior study-wise convergence in gene differential quantification
across diverse thresholds over REM and baselines in five disease tissues, both by means of the average of Jaccard (JC) and
overlap coefficient (OC) (a–e) and phi coefficient (PC) (f–j). For comparison purpose, results from original studies serve
as reference baselines. Overall study-wise convergence differences among AWmeta, REM and baselines were tested by
Kruskal–Wallis test, followed by Nemenyi post-hoc test for pairwise comparisons. Details for these two study-wise convergence
similarity measures appear in "Study-wise convergence assessment for gene differential quantification" section in Methods and
Fig. 2h–j. Boxplot bounds show interquartile ranges (IQR), centers indicate median values, and whiskers extend to 1.5×IQR.
The following icons represent different tissue sources: : substantia nigra; : Peripheral blood; : ileal mucosa; : colonic
mucosa.
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