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Abstract Parkinson’s disease (PD) is a major neurodegener-
ative disease influenced by both genetic and environmental
factors. Although previous studies have provided insights into
the significant impacts of genetic factors on PD, the molecular
mechanism underlying PD remains largely unclear. Under
such situation, a comprehensive analysis focusing on biolog-
ical function and interactions of PD-related genes will provide
us valuable information to understand the pathogenesis of PD.
In the current study, by reviewing the literatures deposited in
PUBMED, we identified 242 genes genetically associated
with PD, referred to as PD-related genes gene set (PDgset).
Functional analysis revealed that biological processes and bio-
chemical pathways related to neurodevelopment, metabolism,
and immune system were enriched in PDgset. Then, pathway
crosstalk analysis indicated that the enriched pathways could
be grouped into two modules, with one module consisted of
pathways mainly involved in neuronal signaling and another
in immune response. Further, based on a global human inter-
actome, we found that PDgset tended to have more moderate
degree compared with cancer-related genes. Moreover, PD-
specific molecular network was inferred using Steiner

minimal tree algorithm and some potential related genes asso-
ciated with PD were identified. In summary, by using
network- and pathway-based methods to explore pathogenetic
mechanism underlying PD, results from our work may have
important implications for understanding the molecular mech-
anism underlying PD. Also, the framework proposed in our
current work can be used to infer pathological molecular net-
work and genes related to a specific disease.
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Introduction

Parkinson’s disease (PD), the most common neurodegenera-
tive movement disorder, is characterized by a number of mo-
tor symptoms such as resting tremor, rigidity, and postural
instability, as well as non-motor symptoms including auto-
nomic, psychiatric, sensory, cognitive impairments, and de-
mentia [1]. As a complex neurological disease and the second
most predominant neurodegenerative disorder after
Alzheimer’s disease, PD affects approximately 1 % of the
population over 60 [2] and results inmore than 100,000 deaths
each year globally [3]. Besides the decrease of quality of life
of those with the disease and their caregivers, PD also causes
heavy economic burden on society. It is estimated that, in
USA alone, the economic burden made by PD can be as high
as $23 billion a year [4].

As a chronic and progressive disorder, the non-motor
symptoms of PD often precede motor deficits by many years.
Although the pathology of the disease is featured by insuffi-
cient production and activity of dopamine resulting from the
degeneration of nigrostriatal dopaminergic neurons and the
accumulation of α-synuclein and other proteins into Lewy
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bodies in neurons [5–7], PD also involves neurotransmitters
other than dopamine and other brain regions. Previously,
Parkinson’s disease was thought to be caused primarily by
environmental factors, but research is revealing that the dis-
ease develops from a complicated interplay of genetic and
environmental factors [8]. In the last decade, a number of
studies have contributed a lot to our understanding of the
pathological and molecular mechanisms of PD, from the per-
spective of animal models [9–11], gene expression [12–15],
genome-wide association (GWA) studies [16–19], and sys-
tems biology [20–24]. The identification of the possible es-
sential proteins such as leucine-rich repeat kinase 2 (LRRK2),
PTEN-induced putative kinase 1 (PINK1), parkin (PARK2),
PARK7, ubiquitin carboxyl-terminal esterase L1 (UCHL1),
glucocerebrosidase (GBA), and alpha-synuclein (SNCA) has
significantly accelerated the process of understanding its mo-
lecular causes. However, the molecular basis of PD remains to
be unraveled.

The complexity of PD is accompanied by clinical chal-
lenges. Till now, diagnostic test for definitive diagnosis at
early stages of PD does not exist, and symptomatic treatment
with drugs to increase dopamine levels or directly stimulate
dopamine receptors in the damaged neurons is still one of the
few approaches available for PD management [8].

Dopamine-replacement therapy remains the most effective
treatment for motor deficits but does not halt disease progres-
sion, and continued efficacy requires increasing doses that
frequently lead to troubling side-effects (dyskinesia). Other
strategies have been proposed, but disease-modifying, neuro-
protective therapies that slow or halt disease progression are
unmet clinical needs. An understanding of basal ganglia cir-
cuitry helps to explain how impaired motor control and cog-
nitive function in patients with Parkinson’s disease arise from
an imbalance between the striatal output pathways.

Even though a number of studies have focused on elucidat-
ing the pathogenesis of PD, few endeavors are made to imple-
ment systems biology-based analyses to decode the underpin-
ning pathological molecular mechanisms. Considering that a
complicated psychiatric phenotype may be under the influ-
ence of lots of genes with small or mild effects rather than
one or two major genes with large effects [25], a comprehen-
sive analysis of potential causal genes within a pathway [26,
27] and/or a network [28, 29] framework might provide many
important insights beyond the conventional single-gene anal-
yses. In this study, we firstly conducted a comprehensive col-
lection of genes genetically associated with PD. Then, we
performed functional enrichment analyses to identify the sig-
nificant biological themes within these genetic factors. To fur-
ther explore the pathogenesis of the PD in a more specific
manner, we analyzed the topological characteristics of these
PD-related genes in the context of human protein-protein in-
teraction network. Moreover, PD-specific molecular network
was inferred using Steiner minimal tree algorithm and

evaluated. This study should provide useful insights for un-
derstanding molecular mechanisms of PD at the systems bio-
logical level.

Materials and Methods

Identification of PD-Related Genes

Candidate genes associated with PD were curated by retriev-
ing the human genetic association studies deposited in
PUBMED (http://www.ncbi.nlm.nih.gov/pubmed/). Similar
to refs. [18, 30, 31], we queried for reports related to PD
with the term (Parkinson’s disease [MeSH]) and
(polymorphism [MeSH] or genotype [MeSH] or alleles
[MeSH]) not (neoplasms [MeSH]). By 7 July 2015, a total
of 2277 publications were retrieved for the disorder. Among
the 2277 articles, there were some biochemical studies instead
of genetic association studies, due to the fact that MeSH terms
polymorphism, genotype, or alleles were tagged to these
biochemistry-based publications and genetic association was
not the main theme. Thus, the abstracts of initial publications
were reviewed, and the genetic association studies of PD were
selected. From the selected publications, we narrowed our
selection by focusing on those reporting a significant associa-
tion of one or more genes with PD. To reduce the number of
false-positive findings, the studies reporting negative or insig-
nificant associations were not included although it is likely
that some genes analyzed in these studies might be associated
with PD. The full reports of the selected publications were
reviewed to ensure the conclusions were supported by the
content. From these studies, genes reported to be associated
with PD were selected for the current study. In some studies,
several genes were found to act in concert to show significant
association with PD, with each gene only showing a moderate
effect; these genes were also included according to our inclu-
sion criteria of gene collection. Moreover, the associated
genes from several GWA studies, showing genetic association
at a genome-wide significance level or strongly proposed by
authors of the original reports, were included.

Functional Enrichment Analysis of PD-Related Genes

The functional features of the PD-related genes were exam-
ined by WebGestalt [32] and ToppGene [33]. WebGestalt is a
Web-based system that incorporates information from differ-
ent resources to detect the biological themes out of the candi-
date gene lists, including evaluating the enrichment signifi-
cance of gene ontology (GO) terms. The notable feature of
representing GO terms enrichment results in a directed acyclic
graph facilitated its usage in our GO analysis. Considering the
fact that GO terms with higher hierarchical level in the GO
tree structure possessed more explicit biological function [34],

Mol Neurobiol (2017) 54:4452–4465 4453

http://www.ncbi.nlm.nih.gov/pubmed/


we adopted the criterion that in our analysis, only the leaf GO
terms of biological processes with false discovery rate (FDR)
value smaller than 0.05 were kept as the significantly enriched
ones. Due to timely update of pathway data, ease of access,
transparency of features, and visibility in publications,
ToppGene was selected to analyze the biochemical pathways
enriched in the candidate genes. Basically, the genes with their
symbols and/or corresponding NCBI Entrez Gene IDs were
uploaded into the server and compared with the genes includ-
ed in each canonical pathway based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG; www.
genome.jp/kegg) and Biocarta (www.biocarta.com) pathway
databases. All the pathways with one or more genes
overlapping the candidate genes were extracted, with each of
them assigned a P value to denote overlap significance
between the pathway and the input genes via Fisher’s exact
test. Thereafter, the pathways with FDR value less than 0.05
were considered to be significantly enriched.

Pathway Crosstalk Analysis

We further performed pathway crosstalk analysis to explore
the interactions among significantly enriched pathways. To
describe the overlap between any given pair of pathways,
two measurements were computed, i.e., the Jaccard
Coefficient (JC) ¼ j A∩BA∪B j and the Overlap Coefficient (OC)

¼ jA∩Bj
min jAj;jBjð Þ, where A and B are the lists of genes included in

the two tested pathways. To construct the pathway crosstalk,
we implemented the following procedure:

1. Select a set of pathways for crosstalk analysis. Only the
pathways with PBH value less than 0.05 were used.
Meanwhile, the pathways containing less than three can-
didate genes were removed because pathways with too
few genes may have insufficient biological information.

2. Count the number of shared candidate genes between any
pair of pathways. Pathway pair with less than two over-
lapped genes was removed.

3. Calculate the overlap of all pathway pairs and rank them.
All the pathway pairs were ranked according to their JC
and OC values.

4. Visualize the selected pathway crosstalk with the software
Cytoscape [35].

Construction of the Human Interactome

To investigate the interaction and correlation between the
genes associated with PD, we constructed a relatively com-
prehensive and reliable human interactome and the potential
molecular network topological characteristics of gene sets re-
lated to PD were inferred and analyzed. First, we downloaded

the human protein-protein interaction (PPI) data from the
Protein Interaction Network Analysis (PINA) platform (re-
lease version: 21 May 2014) [36], which pooled and curated
non-redundant physical interaction data from six major pro-
tein interaction databases, i.e., IntAct, BioGRID, DIP, HPRD,
MINT, and MIPS/MPact. At the same time, a human interac-
tome compiled by a recent study [37], which contained
141,296 physical interactions between 13,460 proteins, in-
cluding protein-protein and regulatory interactions, metabolic
pathway interactions, and kinase-substrate interactions, was
adopted as another interaction data source. After excluding
the redundant and self-interacting pairs and using Uniprot
Re t r i eve / ID mapping too l (h t tp : / /www.unipro t .
org/uploadlists) to map these interactome data onto NCBI
human protein-coding genes, we constructed a relatively com-
prehensive human physical interactome by merging the two
data sets, which contained 16,022 nodes and 228,122 edges.

Construction of PD-Specific Network via Steiner Minimal
Tree Algorithm

Disease subnetwork extraction could provide us with the hints
for how the disease-related molecules react with each other.
Although several methods have been developed for subnet-
work extraction [38, 39], it has been shown that there is a
network parsimony principle in the context of biological pro-
cesses [40], i.e., underlying causal molecular pathways or/and
networks are often in line with the shortest molecular paths
between known disease-associated components, such as
disease-related genes or proteins. Steiner minimal tree algo-
rithm coincides with this biological principle, which uses a
greedy heuristic strategy to iteratively link the smaller trees
into larger ones until there is only one tree connecting all seed
nodes [41]. GenRev, a tool to search the optimal additional
nodes for the connection of input seed genes via the Steiner
minimal tree algorithm [42], was used to extract specific po-
tential pathological network from our human interactome by
using the collected genes associated with PD as input seeds.
Since the human PPI network is still far from complete, some
proteins may simply have more interaction information than
others because they are better studied, instead of they are
biologically more important. To alleviate the influence of the
genes with extremely high interactions on the network con-
struction, the reciprocal of the degree of each nodewas used as
its weight in building the Steiner minimal tree. To assess the
non-randomness of the constructed network, we first generat-
ed 1000 random networks with the same number of vertices
and interactions as the PD-specific network using Erdos-
Renyi model in R igraph package [43]. Then, we calculated
the arithmetic average values of the shortest-path distance and
clustering coefficient. Depending on the number of random
networks with average shortest-path distance (ND) smaller
than that of the PD-specific networks and the number of
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random networks with average clustering coefficient (NC)
higher than the observed clustering coefficient, we could as-
sess the significance level of non-randomness. Finally, we
calculated the empirical P value using ND/1000 and NC/
1000, separately.

Results

Identification of Genes Reported To Be Associated
with PD

By searching PUBMED, we extracted publications on the
genetic association studies related to Parkinson’s disease. In
this procedure, only the publications reporting a significant
association of gene(s) with the disease were collected; those
by the authors of original literatures reporting a negative as-
sociation or insignificant result were not included. A detailed
list of all genes reported to be associated with Parkinson’s
disease is provided in Supplemental Table 1.

Altogether, a gene set (referred to as PD-related genes gene
set (PDgset)) with 242 members reported to be significantly
associated with PD were collected frommore than 200 studies
(Supplemental Table 1). Among them were two nAChR sub-
unit genes, i.e., CHRNA5 and CHRNB3, three dopamine re-
ceptors, i.e., DRD2, DRD3, and DRD4, and two serotonin
receptors, i.e., HTR2A and HTR6. A couple of genes
encoding transporters were also included, such as the dopa-
mine transporter (SLC6A3), serotonin transporter (SLC6A4),
glucose transporters (SLC2A9 and SLC2A13), as well as ion
transporters (e.g., SLC11A2, SLC41A1, and SLCO3A1). The
other genes were those involving the functions related to nitric
oxide synthesis (NOS1, NOS2, and NOS3), peptidoglycan
recognition (PGLYRP2, PGLYRP3, and PGLYRP4), immune
response (e.g., IL1A, IL6, IL10, and LINGO2), as well as
mitochondrial function (e.g., MT-ATP6, MT-CO1, MT-
CYB, and MTIF3). The diversity of the genes significantly
associated with Parkinson’s disease clearly demonstrated the
complexity of this disorder.

Biological Functions Enriched in PDgset

Functional enrichment analysis revealed a more specific func-
tion pattern of these genes (Supplemental Table 2). Among the
GO terms significantly enriched in the candidate genes, in-
clude those associatedwith drug response, neurodevelopment,
or synaptic transmission. GO terms related to drug response
(e.g., response to amphetamine, response to nicotine, and re-
sponse to alcohol) and metabolism (e.g., xenobiotic metabolic
process) were enriched in genes in PDgset. These results were
consistent with the findings that complicated connections
existed between the pathophysiological of Parkinson’s disease
and drug abuse [44, 45]. Terms directly related to synaptic

transmission (e.g., regulation of synaptic transmission, dopa-
minergic; dopamine uptake involved in synaptic transmission;
and neurotransmitter secretion), dopamine metabolism (e.g.,
dopamine biosynthetic process and regulation of dopamine
metabolic process), and other neuronal function (e.g., neuron
migration, regulation of neuronal synaptic plasticity, midbrain
development, and memory) were included. Also, GO terms
related to immune function (e.g., positive regulation of
interleukin-6 production, negative regulation of inflammatory
response, and negative regulation of immune effector process)
were also enriched in these genes. These results indicated the
candidate genes collected were relatively reliable for follow-
ing up bioinformatics analysis.

Pathway Enrichment Analysis in PDgset

Identifying the biochemical pathways enriched in the candi-
date genes may provide valuable hints for our understanding
of the molecular mechanisms underlying PD.We searched for
enriched pathways in the PDgset using ToppGene and found
44 significant enrichment pathways for PD (Table 1).
Consistent with previous studies [46], several pathways relat-
ed to metabolism, e.g., drug metabolism-cytochrome P450
(ranked 1st in Table 1) and metabolism of xenobiotics by
cytochrome P450 (ranked 3rd in Table 1), were enriched in
PDgset. Also, neurotransmitter-related pathways were identi-
fied, such as dopaminergic synapse, serotonergic synapse, ty-
rosine metabolism, etc., all of which were closely related to
signal transduction. Moreover, immune-associated biological
processes consisting of cytokines and inflammatory response,
cytokine network, IL-10 anti-inflammatory signaling, IL-5
signaling, and signal transduction through IL-1R, were also
significantly enriched, suggesting that the immunological sys-
tem were involved in the etiology and pathological process of
PD. Further, pathways related to estrogen signaling and
adipocytokine signaling were also enriched in the candidate
genes, which were consistent with previous studies [47, 48].

Crosstalk Among Significantly Enriched Pathways

To take a further step beyond identifying lists of significantly
enriched pathways and to understand how they interact with
each other, we performed a pathway crosstalk analysis among
the 44 significantly enriched pathways. The approach was
based on the assumption that two pathways were considered
to crosstalk if they shared a proportion of PDgset [28]. There
were 39 pathways containing three or more members in
PDgset, of which, 36 pathways met the criterion for crosstalk
analysis, i.e., each pathway shared at least two genes with one
or more other pathways. All the pathway pairs (edges) formed
by these pathways were utilized to build the pathway
crosstalk, and the overlapping level between two pathways
was measured according to the average scores of coefficients
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Table 1 Pathways enriched in PDgset

Pathways P valuea PBH valueb Genes included in the pathwayc

Drug metabolism-cytochrome P450 2.20 × 10−7 9.79 × 10−6 ADH1C, ADH7, CYP2D6, CYP2E1, GSTM1, GSTO1,
GSTP1, GSTT1, MAOA, MAOB

Cytokines and inflammatory response 4.54 × 10−7 1.26 × 10−5 CXCL8, HLA-DRA, HLA-DRB1, IL10, IL1A, IL6, TNF

Metabolism of xenobiotics by cytochrome P450 4.97 × 10−7 1.26 × 10−5 ADH1C, ADH7, CYP1A1, CYP2D6, CYP2E1, EPHX1,
GSTM1, GSTO1, GSTP1, GSTT1

Cytokine network 1.05 × 10−6 2.05 × 10−5 CXCL8, IL10, IL18, IL1A, IL6, TNF

Dopaminergic synapse 2.53 × 10−6 4.15 × 10−5 AKT1, COMT, DRD2, DRD3, DRD4, GRIN2A, GSK3B,
MAOA, MAOB, SLC18A2, SLC6A3, TH

Tyrosine metabolism 3.87 × 10−6 6.03 × 10−5 ADH1C, ADH7, COMT, DBH, MAOA, MAOB, TH

IL-10 anti-inflammatory signaling pathway 7.51 × 10−6 1.11 × 10−4 HMOX1, IL10, IL1A, IL6, TNF

IL-5 signaling pathway 1.65 × 10−5 2.24 × 10−4 HLA-DRA, HLA-DRB1, IL1B, IL6

Antigen processing and presentation 7.98 × 10−5 8.59 × 10−4 HLA-C, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1,
HLA-DRB5, HSPA1A, TNF

Hematopoietic cell lineage 1.32 × 10−4 1.37 × 10−3 CD14, HLA-DRA, HLA-DRB1, HLA-DRB5, IL1A, IL1B,
IL6, TNF

Cells and molecules involved in local acute
inflammatory response

1.70 × 10−4 1.71 × 10−3 CXCL8, IL1A, IL6, TNF

Signal transduction through IL-1R 2.30 × 10−4 2.18 × 10−3 IL1A, IL1B, IL1RN, IL6, TNF

NOD-like receptor signaling pathway 4.21 × 10−4 3.75 × 10−3 CXCL8, IL18, IL1B, IL6, NOD2, TNF

HIF-1 signaling pathway 4.76 × 10−4 4.12 × 10−3 AKT1, ERBB2, HMOX1, IL6, INS, NOS2, NOS3, TF

Antigen-dependent B cell activation 9.86 × 10−4 6.99 × 10−3 HLA-DRA, HLA-DRB1, IL10

Calcium signaling pathway 1.14 × 10−3 7.76 × 10−3 ADORA2A, BST1, ERBB2, GRIN2A, HTR2A, HTR6,
NOS1, NOS2, NOS3, P2RX7

Prolactin signaling pathway 1.47 × 10−3 9.73 × 10−3 AKT1, ESR1, ESR2, GSK3B, INS, TH

Adhesion and diapedesis of granulocytes 1.59 × 10−3 1.01 × 10−2 CXCL8, IL1A, TNF

Mineral absorption 1.77 × 10−3 1.11 × 10−2 HMOX1, HMOX2, SLC11A2, TF, VDR

Oxidative phosphorylation 2.09 × 10−3 1.28 × 10−2 MT-ATP6, MT-CO1, MT-CYB, MT-ND1, MT-ND3,
MT-ND4, MT-ND5, NDUFV2

Catecholamine biosynthesis, tyrosine => dopamine =>
noradrenaline => adrenaline

2.85 × 10−3 1.62 × 10−2 DBH, TH

TNF signaling pathway 2.87 × 10−3 1.62 × 10−2 AKT1, IL1B, IL6, MMP9, NOD2, TNF, TNFRSF1A

Arginine and proline metabolism 2.91 × 10−3 1.62 × 10−2 MAOA, MAOB, NOS1, NOS2, NOS3

Mechanism of gene regulation by peroxisome
proliferators via PPARa(alpha)

3.14 × 10−3 1.72 × 10−2 HSPA1A, INS, NOS2, PPARGC1A, TNF

Serotonergic synapse 3.51 × 10−3 1.85 × 10−2 CYP2D6, HTR2A, HTR6, MAOA, MAOB, SLC18A2,
SLC6A4

Chaperones modulate interferon signaling pathway 3.97 × 10−3 2.00 × 10−2 HSPA1A, TNF, TNFRSF1A

Th1/Th2 differentiation 3.97 × 10−3 2.00 × 10−2 HLA-DRA, HLA-DRB1, IL18

Biosynthesis of neurotransmitters 4.23 × 10−3 2.09 × 10−2 DBH, TH

One carbon pool by folate 4.62 × 10−3 2.25 × 10−2 MTHFR, MTR, SHMT1

NF-kappa B signaling pathway 4.78 × 10−3 2.27 × 10−2 CD14, CXCL8, IL1B, PARP1, TNF, TNFRSF1A

Tryptophan metabolism 4.80 × 10−3 2.27 × 10−2 ACMSD, CYP1A1, MAOA, MAOB

Lysosome 5.09 × 10−3 2.37 × 10−2 CTSD, GBA, GLA, LAMP3, SCARB2, SLC11A2, SMPD1

MAPK signaling pathway 5.18 × 10−3 2.38 × 10−2 AKT1, BDNF, CD14, FGF20, HSPA1A, IL1A, IL1B,
MAPT, RRAS2, TNF, TNFRSF1A

Phagosome 5.97 × 10−3 2.70 × 10−2 CD14, HLA-C, HLA-DQA2, HLA-DQB1, HLA-DRA,
HLA-DRB1, HLA-DRB5, NOS1

Adipocytokine signaling pathway 7.04 × 10−3 3.09 × 10−2 AKT1, POMC, PPARGC1A, TNF, TNFRSF1A

Estrogen signaling pathway 7.53 × 10−3 3.26 × 10−2 AKT1, ESR1, ESR2, HSPA1A, MMP9, NOS3

Neuroactive ligand-receptor interaction 8.02 × 10−3 3.38 × 10−2 ADORA2A, CHRNA5, CHRNB3, CRHR1, DRD2, DRD3,
DRD4, GRIN2A, HTR2A, HTR6, P2RX7
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JC and OC. Based on their crosstalk, the pathways could be
roughly grouped into two major modules, with each module
including pathways shared more interactions compared with
other pathways and may likely be involved in the same or
similar biological process (Fig. 1). One module mainly
consisted of neuronal signaling-related pathways, such as cal-
cium signaling, dopaminergic synapse, and seotonergic syn-
apse, as well as the metabolic pathways of neurotransmitters
or drug, such as tryptophan metabolism and tyrosine metabo-
lism. The second module was primarily dominated by im-
mune system-related pathways, including role of cytokines
in mediating communication between immune cells, toll-like
receptor signaling, and others. At the same time, the two mod-
ules were not independent, instead, they were connected via a
couple of pathway interactions.

Network Topological Characteristics of PDgset

Analyzing the topological properties of nodes and interactions
between nodes via PPI-based analysis can help to reveal the
underpinning biological-related mechanisms associated with
the network [49]. To delineate the network topological char-
acteristics of PDgset, the degree of the constructed network
was analyzed in the context of our constructed human inter-
actome. For comparison, the network features of two other
gene sets, i.e., a list of nicotine addiction-related genes
(NAGenes) with 220 members [18] and a list of cancer-
related genes (CAgenes) with 569 genes (Cancer Gene
C e n s u s d a t a b a s e ; h t t p : / / c a n c e r . s a n g e r . a c .
uk/cancergenome/projects/cosmic/) were also analyzed.
Nicotine addiction can evoke the dysfunction of neuronal

Table 1 (continued)

Pathways P valuea PBH valueb Genes included in the pathwayc

GABA biosynthesis, eukaryotes, putrescine => GABA 9.81 × 10−3 4.07 × 10−2 MAOA, MAOB

Toll-like receptor signaling pathway 9.91 × 10−3 4.07 × 10−2 AKT1, CD14, CXCL8, IL1B, IL6, TNF

Glutathione metabolism 1.13 × 10−2 4.48 × 10−2 GSTM1, GSTO1, GSTP1, GSTT1

Histidine metabolism 1.20 × 10−2 4.61 × 10−2 HNMT, MAOA, MAOB

Free radical-induced apoptosis 1.21 × 10−2 4.61 × 10−2 CXCL8, TNF

SODD/TNFR1 signaling pathway 1.21 × 10−2 4.61 × 10−2 TNF, TNFRSF1A

TNFR1 signaling pathway 1.32 × 10−2 4.97 × 10−2 PARP1, TNF, TNFRSF1A

PDgset Parkinson’s disease-related genes gene set
aP values were calculated by Fisher’s exact test
bPBH values were adjusted by Benjamini and Hochberg (BH) method
c Two hundred forty-two PD-related genes included in the pathway

Fig. 1 Pathway crosstalk among PDgset-enriched pathways. Nodes
represent pathways, and edges represent crosstalk between pathways.
Edge-width corresponds to the score of specific pathway pair. Larger

edge-width indicates higher score. Node marked with bold number 1
represents the pathway Bcells and molecules involved in local acute
inflammatory response^
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system, and some biological mechanisms may be related
to PD. Cancer has been well studied and is expected to
have substantially different pathological characteristics
from PD. Of all three gene sets, the nodes with specific
degrees (number of genes connecting with a given gene)
were scattered in a range from 1 to more than 1000. For
the PDgset, 215 of 242 genes could be mapped onto the
human interactome network, with a mean degree of 37.1
(i.e., each gene connected with 37.1 other genes on
average); for the NAGenes, 210 of 220 genes could be
mapped onto the human interactome, with an average
degree of 46.1; for the cancer genes, 551 out of 569 had
the corresponding nodes in our interactome, with an
average degree of 74.5. Further, for PDgset and

NAGenes, 57.9 % (140/242) and 56.8 % (125/220)
genes fell in the degree interval of 1–20, respectively,
while only 30 % of the cancer genes were included in
this range. Thus, PDgset and NAgenes tended to have
lower or moderate links than the cancer genes and their
degree distributions appeared to be closer to each other,
indicating obvious distinctions between neurological
disorders and cancer, at least from the aspect of
network.

PD-Specific Molecular Network Inference

To unravel the possible pathological molecular network of
PDgset, we extracted the specific network for PD from the

Fig. 2 Parkinson’s disease-specific network. PD-specific network was
constructed via node-weighted Steiner minimal tree algorithm, with 276
nodes and 522 edges. Ellipse nodes are genes of PDgset, and triangular

nodes are non-original/extended genes. Node color corresponds to its
degree in the human interactome. Darker color indicates higher degree
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human interactome network using the Steiner minimal tree
algorithm. Basically, this approach linked maximal members
of a list of genes with the minimal intermediate nodes. As
shown in Fig. 2, the network of PD contained 276 nodes
and 522 edges. To check the non-randomness of the extracted
network, 1000 random networks were created using Erdos-
Renyi model and their corresponding average shortest-path
distance and average clustering coefficient were compared
with the corresponding values of the PD-specific network.
For these random subnetworks, the mean shortest-path dis-
tance was 4.3, significantly larger than that of the PD-related
network (shortest-path distance, 2.9; empirical p < 0.001). The
average clustering coefficient of the random networks was
0.01, statistically significantly less than that of the PD distinc-
tive network (clustering coefficient, 0.25; empirical p <
0.001). Thus, our extracted PD-specific network is a non-
random network.

As specified, 215 of the 242 genes in PDgset were
included in human interactome network and the extracted
PD-specific network, which accounted for 88.8 % of the
genes in PDgset and 77.9 % of 276 genes in the PD-
specific network, indicating a high coverage of PDgset in
the subnetwork. On the other hand, 61 genes in the PD-
specific network were not included in PDgset (Table 2).
These genes had close interaction with genes known to
be related to the biological processes involved in
Parkinson’s disease, they may also be involved in the
pathological condition of this disorder. Of note, some
of the genes, e.g., nuclear respiratory factor 1 (NRF1),
cathepsin E (CTSE), neural cell adhesion molecule 1
(NCAM1), and coagulation factor V (F5), had been pur-
portedly associated with PD in previous studies [24,
50–53]. Some of these genes may have not been found
to be directly involved in the pathogenesis of PD, but
genes interacting with them or other members from the
same family have been demonstrated to play a role in
such procedure. For example, Solute carrier family 9
subfamily A member 3 regulator 2 (SLC9A3R2),
encoding a member of the NHERF family of PDZ scaf-
folding proteins that mediate many cellular processes by
binding to and regulating the membrane expression and
protein-protein interactions of membrane receptors and
transport proteins, was included in the PD-specific net-
work. It can interact with serum and glucocorticoid-
regulated kinase 1 (SGK1), an important player in cell
death processes underlying neurodegerative diseases in-
cluding PD [54–56]. 14-3-3 protein beta/alpha
(YWHAB), a member of the highly conserved 14-3-3
family whose members are involved in mediating signal
transduction by binding to phosphoserine-containing pro-
teins, was also included in the PD-specific network.
YWHAZ, another member from the same family, has
been found to play a key role in a number of

neurodegenerative disorders [57]. Thus, these genes pro-
vided a list of potential candidates for further
exploration.

Discussion

In the past decades, much has been learnt about the mo-
lecular mechanisms underlying Parkinson’s disease from
studies on human subjects, animals, or cell models.
Although with the development of high-throughput tech-
nology more and more genes/proteins have been identi-
fied to be related to this disorder, a thorough understand-
ing of the biological processes related to pathogenesis of
PD at the molecular level is still far from complete. So,
there is a need for decoding the potential pathogenesis of
PD at systems biology level. In this study, by collecting
the genes genetically associated with PD, systematically
exploring the interaction of these genes using pathway
and network analyses, we provided a comprehensive
and systematic framework to delineate related biochemi-
cal processes.

Although candidate gene-based genetic association and
biochemical studies have provided us with the knowledge
about factors involving PD, a systematic approach described
in our study has significant advantages. First, in this work, we
conducted a comprehensive collection of the genes potentially
genetically associated with PD, which provided valuable
sources for further analysis. Moreover, as many diseases are
caused by the altered expression of many genes, each with a
small to moderate effect, which act in concert to influence
several biological pathways that eventually leads to the clini-
cal phenotype [58], we retrieved several genes collectively
showing association with PD, which supplies a high coverage
of related genes. In addition, pathway analysis taking account
of the biological relevance of genes can be more robust to
possible false positives caused by various genes in different
studies, and coupling with network analysis, it might provide
a more comprehensive view of the molecular mechanisms
underlying PD.

Biological function enrichment analysis identified the spe-
cific biological processes involved by PDgset. Our GO enrich-
ment analysis indicated that these genes for PD participated in
drug response processes, immune system, metabolic process,
and neurodevelopment. For instance, terms such as response
to ethanol, positive regulation of interleukin-6 production, xe-
nobiotic metabolic process, and neurotransmitter biosynthetic
process were significantly enriched in PD-related genes, indi-
cating the importance of these activities in the pathologic pro-
cesses of PD. Of significance, we found that the GO biological
process terms of visual learning, sleep, and memory were also
in the enriched list, in line with previous findings of various
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Table 2 Genes included in PD-
specific network but not in
PDgset

Gene symbol Gene name

AATK Apoptosis-associated tyrosine kinase

ABCA3 ATP-binding cassette, subfamily A (ABC1), member 3

APP Amyloid beta (A4) precursor protein

APPBP2 Amyloid beta precursor protein (cytoplasmic tail) binding protein 2

ARFGAP3 ADP-ribosylation factor GTPase activating protein 3

ATP6AP1 ATPase, H+ transporting, lysosomal accessory protein 1

BOK BCL2-related ovarian killer

BTC Betacellulin

CCDC155 Coiled-coil domain containing 155

CISD1 CDGSH iron sulfur domain 1

CLIC6 Chloride intracellular channel 6

CRHBP Corticotropin releasing hormone binding protein

CTSE Cathepsin E

CYB5A Cytochrome b5 type A (microsomal)

CYP3A7 Cytochrome P450, family 3, subfamily A, polypeptide 7

DISC1 Disrupted in schizophrenia 1

EHD4 EH-domain containing 4

F5 Coagulation factor V (proaccelerin, labile factor)

FDXR Ferredoxin reductase

FOXA2 Forkhead box A2

FZD1 Frizzled class receptor 1

GALC Galactosylceramidase

GAST Gastrin

GNAS GNAS complex locus

HOXB1 Homeobox B1

HRH1 Histamine receptor H1

IL1R2 Interleukin 1 receptor, type II

KIR2DS2 Killer cell immunoglobulin-like receptor, two domains, short
cytoplasmic tail, 2

LBP Lipopolysaccharide binding protein

LCAT Lecithin-cholesterol acyltransferase

LDB1 LIM domain binding 1

MAGEA11 Melanoma antigen family A11

MAP2K2 Mitogen-activated protein kinase kinase 2

MEF2A Myocyte enhancer factor 2A

MEP1A Meprin A, alpha (PABA peptide hydrolase)

NAA10 N(alpha)-acetyltransferase 10, NatA catalytic subunit

NAPG N-ethylmaleimide-sensitive factor attachment protein, gamma

NCAM1 Neural cell adhesion molecule 1

NCK1 NCK adaptor protein 1

NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B
cells 2 (p49/p100)

NRF1 Nuclear respiratory factor 1

PANX1 Pannexin 1

PARD6G Par-6 family cell polarity regulator gamma

PAX6 Paired box 6

POLG2 Polymerase (DNA directed), gamma 2, accessory subunit

POU4F1 POU class 4 homeobox 1

PRADC1 Protease-associated domain containing 1

RAB26 RAB26, member RAS oncogene family
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physiological processes, including learning, sleep, and mem-
ory [59–61], involved in PD.

Pathway analysis revealed that immunologic system-
related pathways were enriched in PDgset, which further
consolidates ties between the pathology of PD and
immune-specific activities. Numerous studies have con-
firmed the role of neuroinflammation in the PD patholo-
gy, with inflammatory cytokines playing a central role
[62–64]. In the meantime, three pathways related to
monoamine neurotransmitters were found to be enriched
in the PDgset, consistent with their indispensable roles in
the pathogenesis and pathological development of PD
[65, 66]. Dopamine and serotonin are separately major
excitatory and inhibitory neurotransmitter, and both of
them exert critical effects in the development of PD.
These neurotransmitters interact with the corresponding
receptors, thus triggering a series of neural signaling
pathways, and then ultimately modulate various physio-
logical processes. They could directly or indirectly act in
the impairing course of synaptic plasticity such as long-
term potentiation and long-term depression of animal
models or PD patients [67–69], subsequently damaging
several synapse-based biological functions such as cog-
nition and memory. Therefore, these neurotransmitter-
associated pathways might be involved in the early de-
velopmental stages of neurodegeneration and facilitate
the emergence of dopamine neuron losses and impaired
cognitive and memory activities. We found out that the
adipocytokine signaling was in the enriched pathway list
for PD-related genes. Inside the pathway, leptin, as the
key protein, was dissected to exert neuroprotective ef-
fects on specific neuronal cells and reduce the risk of

PD, strengthening the notion that there might be a link
between neurodegeneration and abnormal or disrupted
adipocytokine signaling [70]. As indicated by these re-
sults, the molecular mechanisms underlying PD are so
complex and further thorough studies are needed to de-
cipher their underlying pathologic mechanisms.

Of significance, in pathway crosstalk analysis, we iden-
tified two main modules. One module was mainly domi-
nated by the pathways associated with the activity of the
nervous system. Among these pathways, dopaminergic
synapse, serotonergic synapse, calcium signaling pathway,
and neuroactive ligand-receptor interaction have been well
studied to be involved in neuron or central nervous system,
as well as the progress of Parkinson’s disease [71–73]. For
another module, the pathways were mainly involved in
immune response or related functions. Subsequently, we
collected the genes contributing to the crosstalk, and the
most frequently shared genes included dopamine receptors
(e.g., DRD2, DRD3, and DRD4), monoamine oxidase A
(MAOA), and B (MAOB), tumor necrosis factor (TNF),
interleukins (e.g., IL-6, IL-10, and IL-18), suggesting these
genes might be more potential targets in the development
of PD. Furthermore, the two modules were connected into
a larger interacting profile via multiple edges formed by
pathways, suggesting that these modules, as well as the
pathways included, function in a concerted manner, instead
of in separate ways. Based on such information, the major
pathways involved in Parkinson’s disease can be summa-
rized into a schematic representation (Fig. 3). In earlier
work [17], a set of genes related to nicotine dependence
(ND) was analyzed by similar approach and three major
functional modules were revealed from the pathway

Table 2 (continued)
Gene symbol Gene name

S100P S100 calcium binding protein P

SIAH1 Siah E3 ubiquitin protein ligase 1

SLC9A3R2 Solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3),
member 3 regulator 2

SPAG5 Sperm associated antigen 5

SWSAP1 SWIM-type zinc finger 7 associated protein 1

TMEM132A Transmembrane protein 132A

TRPV6 Transient receptor potential cation channel, subfamily V, member 6

TYROBP TYRO protein tyrosine kinase binding protein

UBASH3B Ubiquitin associated and SH3 domain containing B

UBC Ubiquitin C

UCN Urocortin

VLDLR Very low-density lipoprotein receptor

YWHAB Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation
protein, beta

PD Parkinson’s disease, PDgset PD-related genes gene set
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crosstalk analysis, i.e., one module mainly consisting of
neurodevelopment-related signaling pathways, one module
including the immune system-related pathways, and a third
one mainly including metabolic pathways of neurotrans-
mitters or drug. As we know, ND is a neuronal disorder
stemming from dysregulated neuronal activities triggered
by chronic nicotine exposure, and PD is a neurodegenera-
tive disease due to genetic reasons and/or various environ-
mental factors. However, it has been observed that there is
a close relationship between smoking and PD [74] as nic-
otine may act as a potential neuroprotective agent for PD,
which means the two diseases may have some overlaps in
their molecular mechanisms. Thus, the functional modules,
as well as the pathways included, detected for ND and PD,
may represent the major biological procedures involved in
each disease, and the difference of the functional modules
may indicate the difference in molecular mechanisms un-
derlying the two diseases. Of course, the identification of
genes related to ND and PD is still an ongoing task. We
still do not have a complete gene list for either disease yet,
and it is also possible that some genes in the lists may
prove to be false positives in the future. Thus, the pathways

and their connections related to each disease may also be
subjected to change when more evidences are obtained.

We further inferred the PD-specific network from our hu-
man reference interactome network. It was noteworthy that
some extended genes not included in the PDgset but appearing
in the human interactome were plausible ones reported to be
associated with PD. For example, NRF1 was identified as a
potential PPARGC1A target gene in PD, which was downreg-
ulated by PARIS accumulation in the nigrostriatal pathway
[51]. TYROBP, a transmembrane signaling polypeptide, was
identified by our network analysis. It has been demonstrated
that the TYROBP-deficient mouse bore the impaired synaptic
function in the microglial [75], suggesting a potential patho-
logical role of TYROBP in PD. FOXA2, a specifically
expressed protein in adult dopamine neurons, is required to
generate dopaminergic neurons in the period of fetal develop-
ment, which exerts a clue to its correlation with PD [76]. To
investigate the protection mechanisms of glial cell line-
derived neurotrophic factor (GDNF) preventing the dopami-
nergic neurons from degeneration, through establishing early
PD rat models, Cao et al. indicated that NFKB2, the transcrip-
tion factor complex nuclear factor (NF)-kappaB, as part of

Parkinson’s disease

Free Radical Induced Apoptosis

Energy Depletion

Dopaminergic Synapse Serotonergic Synapse

Metabolism/Biosynthesis

Estrogen Signaling

NF-Kappa B Signaling MAPK Signaling

HIF-1 Signaling

Oxidative Phosphorylation

Cytokines and Inflammatory Response

Adipocytokine Signaling

NOD-like Receptor Signaling

Phagosome

Calcium Signaling TNF Signaling Toll-like Receptor Signaling

Apoptosis

Translation

Transcription

Synaptic Plasticity

Fig. 3 Schematic representation of the major pathways involved in Parkinson’s disease. Genetic studies have indicated that Parkinson’s disease is a
complex disorder. These main pathways were connected on the basis of their biological relations
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NF-kappaB signaling pathway, was involved in the effects of
GDNF on dopamine neurons [77]. As demonstrated by the
results elaborated above, our network-inferring method could
not only provide meaningful inferred network of PDgset for
PD but also have the promise to identify potential related
genes.

There have been several studies devoted to the curation of
PD-related genes. By incorporating genetic variation, popula-
tion studies, literature evidence, and gene sequences, Tang et
al. developed The Mutation Database for Parkinson’s Disease
(MDPD) [78]. By collecting 6130 substantia nigra (SN)-
expressed sequenced tags from normal SN tissues and PD
patients’ SN tissues, Yang et al. [79] constructed a database,
namely PDbase, which contains 2698 PD-related genes, ge-
netic variation, and functional elements. Themost widely used
PD-related genes are from PDGene database, built by Lill et
al. [80] and Nalls et al. [20], mainly based on results pertaining
to the meta-analysis for 15 independent GWAS datasets of
European descent. Among these databases, only PDGene is
still available now. Compared with PDGene, last updated on
19 August 2014, our data set PDgset included the more recent
studies. Also, PDgene analyzed all the included datasets with
a single criterion and ranked the polymorphisms according to
their significance. On the other hand, in PDgset, we utilized a
unified gene symbol standard to collect genes reported to be
significantly associated with PD by the original authors. Since
most of the genes were from association studies on individual
genes, some of the genes may only have moderate P values,
but they concerted with other genes to show a significant
association with PD, which made PDgset a more comprehen-
sive dataset for PD exploration. Thus, PDgset should provide
a useful complement for PDGene.

Undeniably, there are several limitations of this study. First,
our pathway and network analysis results depend entirely on
genes in the retrieved literatures purported to be associated
with PD. Given that identification of risk genes for PD is an
ongoing process, the genes, GO biological process terms,
pathways, and results from the network analysis identified in
this study should be treated in the same way. Second, we
accepted the results drawn by the original authors of each
retrieved study in our analysis, which surely bias our results
because of the imbalance and incomprehensiveness of those
current available studies. Thirdly, to reduce the false-positive
rate of genes, we excluded publications with negative or in-
significant results. However, we cannot deny that some genes
from these studies may be associated with our interested phe-
notype. This is largely due to the small sample size or hetero-
geneity or any other factors. In addition, although the number
and data quality of PPI databases have been significantly im-
proved, the human interactome is still incomplete. At the same
time, owing to the limitation of current technology, some
false-positive data may exist in the PPI [81]. To some extent,
the incompleteness of human interactome network may affect

our results [37, 82]. For example, our proposed node-
weighted Steiner minimal tree algorithm should have avoided
genes/proteins with fundamental biological function, such as
ubiquitin C (UBC); however, due to the partialness of human
interactome network, these genes/proteins are the only linkers
between our collected genes. With improvement of coverage
for PPI, the real molecular network will be discovered and
these fundamental genes/proteins will certainly be prevented
from appearing in our inferred network.

Conclusion

In this study, we adopted a systems biology framework for a
comprehensive and systematic biological function- and
network-based analysis of PD using associated genes com-
piled from selective literatures deposited in PUBMED.
Through integrating the information from GO, pathway and
pathway crosstalk analysis, we found that biological processes
and biochemical pathways related to immunological system
and neurodevelopment were enriched in PDgset and exam-
ined the inner relations among these significant pathways.
Moreover, PD-specific pathological molecular network was
created using Steiner minimal tree algorithm and some poten-
tial related genes associated with PD were identified. Such a
systematic and comprehensive exploration of the genes
involved in PD will not only improve our understanding
of the contribution of genetic factors and their interaction
with environmental factors to the pathogenesis of
Parkinson’s disease but will also help us to identify po-
tential biomarkers for further exploration. Meanwhile, the
framework proposed in our current paper can be
transplanted to infer pathological molecular network
and genes related to a specific disease.
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