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In human physiological conditions like complex diseases, a large number of genes/proteins, as well as
their interactions, are involved. Thus, detecting the biochemical pathways enriched in these genes/pro-
teins and identifying the pathway relationships is critical to understand the molecular mechanisms
underlying a disease and can also be valuable in selecting the potential molecular targets for further
exploration. In this study, we proposed a method to measure the relationship between pathways based
on their distribution in the human PPI network. By representing each pathway as a gene module in the
PPI network, a distance was calculated to measure the closeness of two pathways. For the pathways in
the KEGG database, a total of 2143 pathway pairs with close connections were identified. Additional eval-
uations indicated the pathway relationship built via such approach was consistent with available evi-
dence. Further, based on the genes and pathways potentially associated with the pathogenesis of
Parkinson’s disease (PD), we analyzed the pathway relationship and identified the major pathways
related to this disorder via the new method. Also, by analyzing the pathway interaction network con-
structed by the identified major pathways, we explored the potential pathway targets that may be impor-
tant in the etiology and development of PD. In summary, we proposed an approach to measure the
relationship between pathways, which could provide a more systematic profile on pathways involved
in a phenotype, and may also help to improve the result of pathway enrichment analysis.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

In biological system, a pathway is a series of actions or interac-
tions among genes or genes products that leads to the generation
of a certain product or a change in a cell. As most biological func-
tions are performed by multiple genes and their products cooper-
atively, pathways are fundamental for the proper function of a
biological system and their dysregulation is often related with dys-
function or diseases. Thus, identifying the molecules involved in a
biological process and uncovering the pathways associated with
them has become essential in studies aiming at deciphering the
molecular mechanisms underlying a phenotype or disease. Espe-
cially, with the advancement and wide application of high-
throughput techniques such as DNA microarray, proteomic profil-
ing and RNA sequencing, we are able to analyze the expression of
many genes or their products simultaneously in a single experi-
ment, through which we often obtain a list of genes/proteins
whose expression significantly changed between two conditions.
For a given set of candidate genes associated with a phenotype
or disease, a quick and effective way to uncover the underlying bio-
logical themes is to identify the pathways enriched in the genes,
i.e., pathways whose expression patterns or functions are poten-
tially regulated in the conditions or phenotypes under study. Cur-
rently, numerous methods have been developed to identify the
pathways enriched in a given gene list [1–6], which usually are
based on over-representation analysis, functional class scoring or
topology analysis.

Similar to the molecular components such as genes and pro-
teins, in a biological process, pathways are also not independent
to each other; instead, they usually work together in a highly
orchestrated fashion and the function of two pathways can be
cooperative, compensatory or alternative. For this reason, the reg-
ulation or dysfunction of one pathway may affect other pathways
directly or indirectly, and the dysregulation of the pathway inter-
actions may also lead to detrimental consequences in cells; at
the same time, modification in a physiological condition is often
associated with changes or adaptations in pathway dependencies,
with the hub pathways particularly important to these phenotypic
changes [7,8]. For instance, synthesized inhibitors targeting core
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proteins in some defected pathways in tumors have drawn much
attention for cancer therapy. However, in many cases, the clinical
outcomes are not effective as expectation. It is suggested that the
complex interactions among the underlying pathways are respon-
sible for such observations, because when a pathway is blockaded
by an inhibitor, a compensatory pathway may be modified and the
function of the cascade can be recovered or maintained [7]. Thus,
after the enriched pathways having been identified from a given
gene list, detecting the relationships between pathways is essential
for us to obtain a more comprehensive and systematic view about
the biological conditions under study. It is not only important for
us to properly interpret the biological function of the detected
pathways, but also can provide useful insight on the collective
behavior and effects of individual genes included in the pathways.

In a biological process, the relationship between pathways may
be direct crosstalk, in which two or more pathways share some
common components or are involved in a cellular event in a time
order. For example, the crosstalk between cAMP and MAPK signal-
ing plays important roles in a series of biological processes [9–11].
While cAMP signaling pathway is involved in the cellular response
to various extracellular signals, MAPK signaling pathway can com-
municate extracellular signals to gene transcription in the nucleus
and produces changes in the cell. The two pathways interact with
each other via ERK, a protein in the MAPK signaling that can be
phosphorylated by PKA, the major intracellular receptor of cAMP.
The interactions between some pathways are indirect connection
because of the spatial or temporal separation. For example, some
components of the signaling pathways inside the cell can affect
the structure of the cytoskeleton and thereby the cell’s interaction
with the extracellular matrix (ECM); on the other hand, the inter-
actions between the ECM and cell can trigger responses within the
cell by coordinating the signaling pathways that control the cellu-
lar behavior. Through such a transmembrane extracellular matrix-
cytoskeleton crosstalk, pathways in a cell can not only affect the
properties of the ECM, but also may trigger responses within the
neighboring cells [12,13].

To detect the direct crosstalks among pathways, a simple and
straightforward way is to compare the genes/proteins and their
interactions common to the pathways. For a pair of pathways, a
contingency table based on the number of common genes/proteins
and common interactions is constructed, and then p-value is com-
puted by Fisher’s exact test to indicate the statistical significance of
such overlap compared to random effect [14–16]. The gene expres-
sion profiles can also be used to detect the crosstalk between path-
ways [8]. In the case of two pathways sharing few or none
components, if some genes/proteins in one pathway have direct
interaction with the members in the other pathway, protein-
protein interaction (PPI) information can be used to identify the
pathway relationship. Such an approach is based on assumption
that two pathways are likely to interact with or influence each
other if significantly more protein interactions are detected
between these two pathways than expected by chance [17–22].

However, as mentioned above, the relationship between path-
ways in real biological systems can be more complex than the
direct crosstalk and interaction [7,12,13], which makes these
methods less useful for detecting and measuring the more general
and complex indirect connection between pathways.

Nowadays, protein-protein interaction network has been recog-
nized as a powerful tool in understanding of how genes perform
their biological function. For instance, it is suggested that genes
related to a disease often interact with each other and have a ten-
dency to aggregate into a cluster or module in the PPI network
[23,24]. Based on such observation, the relationships among the
human diseases can be measured by the separation of disease-
related module in the human PPI network [25]. As the function
of a pathway depends on its molecular components and their inter-
actions, a pathway naturally forms a network of related genes/pro-
teins at the molecular network level, which means the pathway
localizations and relationships can be measured and quantified
on the basis of PPI network.

In this study, we proposed a method to measure the relation-
ship between pathways based on their distribution in the human
PPI network. We first extracted the pathways and the genes
included in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database and represented each pathway as a gene module in the
PPI network and distances between the modules were calculated
to measure the closeness of pathways. Then, we applied the pro-
posed methods to analyze the relationships between pathways
related to the Parkinson’s disease (PD). As we know, PD is a severe
neurodegenerative disorder with multiple genes and their muta-
tions involved in the etiology of this disorder [26–30]. The patho-
genetic mechanism and potential therapeutic targets underlying
PD is still unclear.
2. Methods

2.1. Data source

To explore the correlation and interaction among the pathways
and their genes, we compiled a comprehensive protein-protein
interaction (PPI) network, based on which the network topological
properties of the pathways were calculated and analyzed. Briefly,
the human PPI data were obtained from the Protein Interaction
Network Analysis (PINA) database [31] by pooling and curating
the unique physical interaction information from six main public
protein interaction databases, i.e., BioGRID, IntAct, DIP, MINT,
MIPS/MPact, and HPRD. After excluding the protein pairs collected
by Negatome database (it consists of protein and domain pairs that
are unlikely to engage in direct physical interactions) [32], we con-
structed a human PPI network with 15,202 nodes (genes in our
case) and 161,994 edges (connections between genes).

The pathway annotations and genes included in each pathway
were extracted from the KEGG database [33]. In the KEGG data-
base, each pathway is assigned to one of seven major categories,
i.e., metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems,
human diseases, and drug development. These major categories
are further divided into 56 sub-categories, including carbohydrate
metabolism, lipid metabolism, signal transduction, signaling mole-
cules and interaction, etc. In the category of drug development,
pathways mainly contain the molecular networks on the chemical
structures or chemical components of drug active ingredients, as
well as their molecular interaction information. In these pathways,
genes and proteins usually are not the major components, so they
were not included in this study. Altogether, 299 human-related
pathways were collected. It was suggested that a gene set with
fewer than 25 genes could hardly form an observable module in
PPI network [25]; thus, the sixty pathways with fewer than 25
genes mapped to human PPI network were excluded from further
analysis. Finally, we mapped a total of 6614 unique human genes
in the 239 pathways to the PPI network. The pathways were from
the six categories, i.e., metabolism (38 pathways), genetic informa-
tion processing (18), environmental information processing (29),
cellular processes (15), organismal systems (67), and human dis-
eases (72).

Genes related to Parkinson’s disease were collected from two
sources. By reviewing the publications deposited in PUBMED, Hu
et al. [34] identified 242 genes genetically associated with PD,
which provided a comprehensive coverage of genetic factors
related to the pathogenetic mechanism underlying PD. In another
widely used PD-related genes set, PDGene database [35,36], genes
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associated with PD were identified based on a meta-analysis on 15
independent GWAS datasets. Merging the two datasets resulted in
a list of 860 unique genes. Of these genes, 703 could be mapped to
the human PPI network, and the corresponding gene set was
referred to as the PD-related genes list (PDglist) in this study.

2.2. Modularization of pathways in the human PPI network

Since the genes related to a phenotype or biological process
often have a tendency to aggregate in the PPI network, it is
expected that the genes in a pathway may cluster into one or more
modules when they are mapped onto the PPI network. A parame-
ter, module size (S), was employed to measure the modularity of a
pathway in the human PPI network, where S was defined as the
number of genes in the module with the largest number of con-
nected members of the pathway. For a given pathway with N genes
mapped to the PPI network, the statistical significance of the S was
estimated by comparing its measured value with those of a set of
random control samples. In brief, a simulated pathway with N
genes was randomly extracted from the PPI network and its mod-
ule size S was calculated. This randomization procedure was
repeated 10,000 times, and the z-score statistic was used to evalu-
ate the statistical significance:

zS � score ¼ S� Srand

rðSrandÞ
ð1Þ

where Srand and rðSrandÞwere the mean value and standard deviation
of module size of the simulated pathways, respectively. A signifi-
cance threshold of z� score � 1:65 was selected, which corre-
sponded to a significance of P-value < 0.05.

2.3. Detection of pathway-pathway relationship

In the PPI network, the distance between two genes was defined
as the length of the shortest path between them, i.e., the smallest
number of edges needed to connect the two genes. For a pathway
A, we used dAA to denote the mean of the distance of each gene to
its closest neighboring gene in the same pathway. For pathway A
and B, we used dAB to denote the mean of the distance of each gene
in pathway A or B to its closest neighboring gene in the other path-
way. Then, a separation value D was used to measure the relation-
ship of two pathways on the PPI network:

DAB ¼ dAB � dAA þ dBB

2
ð2Þ

the value of DAB could be positive or negative, with a negative value
indicating the existence of overlap between the two pathways,
while a positive value implicating the two pathways were con-
nected via some intermediate genes.

To assess the statistical significance of the separation of a path-
way pair, DAB was compared with the network separation values
obtained from a set of simulated pathway pairs. In brief, two sim-
ulated pathways with the same number of genes as pathway A or B
were randomly extracted from the PPI. Then, the pathway separa-
tion value corresponding to the simulated pathway pair was calcu-
lated. This randomization procedure was repeated 1000 times, and
the z-score statistic was used to evaluate the statistical
significance:

zD � score ¼ DAB � Drand
AB

rðDrand
AB Þ

ð3Þ

where Drand
AB and rðDrand

AB Þ were the mean value and standard devia-
tion of pathway separation value for the random samples. A thresh-
old of zD � score � �1:65 was analytically calculated as significance.
2.4. Pathway enrichment analysis of PDglist

To identify the significantly dysregulated pathways involved in
PD, ToppGene [37] was applied to perform the pathway enrich-
ment analysis of the PDglist. Briefly, the symbols of genes in
PDglist were uploaded into ToppGene server and compared with
the genes included in each pathway in KEGG database; the signif-
icantly enriched pathways in PDglist were identified via the Fish-
er’s exact test and p-value was assigned to each pathway.
Thereafter, the multiple testing correction p-value (FDR) was cal-
culated with the method of Benjamin and Hockberg [38] and a
threshold of FDR < 0.01 was adopted to select the significantly
enriched pathways.

2.5. Pathway crosstalk analysis

For the enriched pathways enriched in PDglist, we also per-
formed pathway crosstalk analysis to explore the interactions
among pathways. To describe the overlap between a given pair
of pathways, we adopted two measurements [39,40], i.e., the
Jaccard CoefficientðJCÞ ¼ j A\BA[B j and the

Overlap CoefficientðOCÞ ¼ jA\Bj
minðjAj;jBjÞ where A and B are the lists of

genes included in the two tested pathways. To construct the path-
way crosstalk, we implemented the following procedure:

1) Select the significantly enriched pathways in PDglist (i.e.,
FDR < 0.01) for crosstalk analysis. Meanwhile, the pathways
containing less than 5 candidate genes were removed
because pathways with too few genes may have insufficient
biological information.

2) Count the number of shared candidate genes between any
pair of pathways. Pathway pair with less than 3 overlapped
genes was removed.

3) Calculate the overlap of all pathway pairs and rank them. All
the pathway pairs were ranked according to the average of
their JC and OC values. Only the pathway pairs with cross-
talk scores in the top 10% were chosen.

The parameters were chosen for a balance between an appro-
priate number of pathways and crosstalk events [39].

3. Results and discussion

3.1. Pathways modularization in human PPI network

For the human-related pathways in the KEGG pathway data-
base, there were 239 pathways with more than 25 mapped genes
on the human PPI network. To check whether a pathway could
form an observable module in the PPI network, we calculated the
module size S (i.e., the size of the largest connected components)
of the sub network formed by the genes in each pathway. Accord-
ing to S value, there were 205 out of 239 pathways with
zS � score � 1:65, suggesting that more than 85% (205/239) path-
ways have a significant observable module in human PPI network.
The module size Swas in the range 2–349 and were larger than 100
for 20% (47/239) of the pathways. As a comparison, for 98%
(234/239) of the pathways, the mean module sizes of the simu-
lated pathways were smaller than 20 (Fig. 1a). Besides, with the
increase of the size of the pathways (the number of genes in a
pathway could be mapped to the PPI network), module sizes for
the real pathways increased more rapidly than the simulated path-
ways (Fig. 1b).

There were 34 pathways without significant observable module
size, which meant the genes in these pathways could not form con-
nected modules in the PPI network. Most of these pathways were



Fig. 1. Modularization of pathways in the human PPI network. The genes contained in a pathway tend to aggregate in the PPI network and cluster into one or more modules.
Modularity of a pathway on the PPI network can be measured by its module size. For each pathway, 10,000 simulated pathways are generated, and each simulated pathway is
generated by randomly selecting genes from the human PPI network with the same number of genes as the corresponding real pathway mapped to the PPI network. The
module size of the simulated pathways corresponding to a real pathway is the average of the module sizes of all the simulated pathways. (a) Distribution of module size
(largest connected component) S of KEGG pathways (denoted as observed in the figure) and simulated pathways (denoted as random in the figure) in the human PPI network.
Compared with the simulated pathways, the module sizes of the real pathways have a much wider range and are also more evenly distributed, suggesting the genes in a real
pathway are more likely to be connected with each other. (b) The correlation between module size and the pathway size on the human PPI network. For real pathways, the
module size increases almost linearly with the increase of pathway size (number of genes of a pathway mapped to the PPI network). For the simulated pathways, however,
there is little or no increase in module size when the pathway size increases.
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metabolism related. Actually, for the 38 pathways categorized as
metabolism in KEGG database, 23 pathways were among these
34 pathways. A close check on these pathways showed that the
metabolism pathways in KEGG database had some features differ-
ent than other pathways. While pathways in the other categories
usually were composed of genes and their products, most metabo-
lism pathways showed the relation of genes (such as enzymes) and
metabolism products. Since many genes in metabolism pathways
only specifically functioned on certain chemical substances and
did not have explicit connections with other genes, they tended
to be more ‘loosely’ connected on the PPI network. Actually, the
modularity of a pathway could also be measured by the mean of
the distance of each gene to its closest neighboring gene in the
same pathway (dAA for pathway A). Compared with the simulated
pathways, all the 239 pathways had p-value < 0.05 when the val-
ues of dAA were compared, indicating the genes in the real path-
ways were more closely connected.

3.2. Pathways relationships

For the 205 pathways with significant module size on the
human PPI network, their relationships were further evaluated.
For each pathway pair, the network-based separation value D
was calculated and its significance level was evaluated based on
the z-score. Altogether, there were 20,910 pathway pairs
(205 � 204/2). Of these pathway pairs, 2150 (10.28%) had D smal-
Table 1
The average network-based separation values and shortest distance values within and be

Metabolism Genetic information
processing

Enviro
proces

Metabolism 0.30 (1.52)* 0.59 (1.91) 0.62 (1
Genetic information processing 0.60 (1.12) 0.67 (1
Environmental information

processing
0.30 (1

Cellular processes
Organismal systems
Human diseases

* The values inside the parentheses are the mean of shortest distance (dAA or dAB) for
ler than 0, which meant they had overlap neighborhood. Of them,
2143 pairs showed statistical significance with p-value < 0.05
(zD � score � �1:65). For the remaining 18,760 pathway pairs
(89.72%), the D values were positive and 2298 of them were statis-
tically significant.

As specified earlier, in the KEGG pathway database, the path-
ways were grouped into six major categories based on the biolog-
ical processes they were involved, i.e., metabolism, genetic
information processing, environmental information processing,
cellular processes, organismal systems and human diseases, with
pathways in each category more closely related. To test whether
the network-based separation value could reflect the relationship
between pathways, the mean of D was calculated for pathways
within each category and category pair (Table 1). Compared with
those in other categories, most of pathways in each of the six cat-
egories had smaller average D values, consistent with the assump-
tion that pathways within the same category were more similar to
each other than those in different categories. We also compared
the mean of the shortest distance (d) for pathways within each cat-
egory and between two categories (Table 1). Similar to the average
D values, the d values for pathways within each of category were
relatively small compared to those in other categories.

In KEGG pathway database, the pathways in each category are
further clustered into more specific sub-categories. For each of
the six categories, we also compared the mean of D for pathways
within each sub-category and between every two sub-categories.
tween different pathway categories.

nmental information
sing

Cellular
processes

Organismal
systems

Human
diseases

.98) 0.57 (1.92) 0.57 (1.97) 0.56 (1.92)

.84) 0.63 (1.78) 0.68 (1.87) 0.63 (1.79)

.20) 0.36 (1.55) 0.33 (1.56) 0.32 (1.51)

0.37 (1.19) 0.40 (1.65) 0.37 (1.55)
0.27 (1.27) 0.34 (1.57)

0.27 (1.19)

pathways within each category or between two categories.
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In most cases, the average D values were smaller for pathways in
the same sub-category than those in different sub-categories. A
comparison of the D values for human diseases related pathways
was shown in Table 2. For pathways in nine of the ten sub-
categories, average D values for pathways within the sub-
categories were smaller than those between sub-categories. For
the sub-category ‘endocrine and metabolic diseases’, the average
D value for pathways in this sub-category was slightly larger
(D = 0.17) than that for pathways between ‘endocrine and meta-
bolic diseases’ and ‘cancers: overview’ (0.15), ‘endocrine and meta-
bolic diseases’ and ‘cancers: specific types’ (0.16), as well as
‘endocrine and metabolic diseases’ and ‘infectious diseases: viral’
(0.12). This result implied that a dysfunction of the endocrine
and metabolic system was likely to be accompanied by other dis-
orders, which was consistent with previous studies [41–43]. The
values inside the parentheses were the mean of shortest distance
(d) for pathways within each sub-category and between every
two sub-categories. These results demonstrated that pathways
within the same category clustered more closely in the PPI
network.

For each pathway pair, the value of D reflected their relation-
ship in function. The pathway pairs with smaller D values tended
to be more closely related in function. For example, for the 20 path-
way pairs with the smallest D values (Table 3), most (15/20) pairs
consisted of pathways from the same category (e.g., cardiovascular
diseases and dilated cardiomyopathy, cocaine addiction and
amphetamine addiction, Parkinson’s disease and Alzheimer’s dis-
ease). The pathways in these pairs belonged to the same KEGG
pathway categories and had similar biological functions. Some
pathway pairs with interesting relationship could also be found
in the list. For example, the two pathways, type I diabetes mellitus
and allograft rejection, were in the two seemingly unrelated sub-
category ‘endocrine and metabolic diseases’ and ‘immune dis-
eases’; however, the small separation value between the two path-
ways suggested they were closely related. Actually, previous
studies showed that post-transplant diabetes was a major compli-
cation after kidney or liver transplantation [44,45]. Of these path-
way pairs, there were also some (5/20) from different categories,
i.e., hedgehog signaling pathway and basal cell carcinoma, retro-
grade endocannabinoid signaling and morphine addiction,
GABAergic synapse and morphine addiction, oxidative phosphory-
lation and Parkinson’s disease, VEGF signaling pathway and Fc
epsilon RI signaling pathway. Although these pathway pairs are
clustered into different categories in the KEGG pathway database,
available studies suggest that the pathways in each pair may be
involved in the same diseases or biological processes. Take mor-
phine addiction as an example, evidences demonstrate that mor-
phine exposure can modulate the effect of long-term
potentiation in GABAergic synapse [46] and have a major influence
on the GABAergic transmission [47]. The altered GABAergic
synapse, in turn, can induce or accelerate the process of the mor-
phine addiction [48]. Besides, those pathway pairs from categories
of organismal system and human diseases may suggest the organ-
ismal systems suffering the functional dysregulation in a specific
human disease. Additionally, the two pathways with close connec-
tions may have compensatory relationships and influence the
effective of targeted therapies. For example, PD325901, a MAP/
ERK kinase (MEK) inhibitor, can be used to treat prostate cancer
potentiation by regulating the expression several components of
PI3K-Akt signaling pathway and extracellular signal-regulated
kinase (ERK) signaling pathway [49]. In line with this observation,
MAPK signaling pathway and PI3K-Akt signaling pathway has a
significantly closely pathways (Dab = �0.04) in our list. In addic-
tion, MAPK signaling pathway was found to be closely related to
Rap1 signaling pathway (Dab = �0.167) and Ras signaling pathway
(Dab = �0.311). These alternative pathways parallel to the ‘BRAF-



Table 3
Pathway pairs with closely relationships (top 20 pathway pairs).

Pathway A Pathway B DAB

KEGG ID Name Category* KEGG ID Name Category*

hsa05410 Hypertrophic
cardiomyopathy

Human diseases (Cardiovascular
diseases)

hsa05414 Dilated cardiomyopathy Human Diseases
(Cardiovascular diseases)

�0.993

hsa05320 Autoimmune thyroid disease Human diseases (Immune
diseases)

hsa05330 Allograft rejection Human Diseases (Immune
diseases)

�0.869

hsa05330 Allograft rejection Human diseases (Immune
diseases)

hsa05332 Graft-versus-host disease Human Diseases (Immune
diseases)

�0.834

hsa04940 Type I diabetes mellitus Human diseases (Endocrine and
metabolic diseases)

hsa05332 Graft-versus-host disease Human Diseases (Immune
diseases)

�0.833

hsa04940 Type I diabetes mellitus Human diseases (Endocrine and
metabolic diseases)

hsa05330 Allograft rejection Human Diseases (Immune
diseases)

�0.824

hsa04340 Hedgehog signaling pathway Environmental information
processing (Signal transduction)

hsa05217 Basal cell carcinoma Human disease (Cancers:
specific types)

�0.813

hsa04727 GABAergic synapse Organismal systems (Nervous
system)

hsa05032 Morphine addiction Human diseases (Substance
dependence)

�0.782

hsa04723 Retrograde endocannabinoid
signaling

Organismal systems (Nervous
system)

hsa04727 GABAergic synapse Organismal systems
(Nervous system)

�0.771

hsa00190 Oxidative phosphorylation Metabolism (Energy metabolism) hsa05012 Parkinson’s disease Human diseases
(Neurodegenerative diseases)

�0.757

hsa04723 Retrograde endocannabinoid
signaling

Organismal systems (Nervous
system)

hsa05032 Morphine addiction Human diseases (Substance
dependence)

�0.729

hsa05030 Cocaine addiction Human diseases (Substance
dependence)

hsa05031 Amphetamine addiction Human diseases (Substance
dependence)

�0.712

hsa05410 Hypertrophic
cardiomyopathy

Human diseases (Cardiovascular
diseases)

hsa05412 Arrhythmogenic right
ventricular cardiomyopathy

Human diseases
(Cardiovascular diseases)

�0.709

hsa05214 Glioma Human disease (Cancers: specific
types)

hsa05223 Non-small cell lung cancer Human disease (Cancers:
specific types)

�0.697

hsa05412 Arrhythmogenic right
ventricular cardiomyopathy

Human diseases (Cardiovascular
diseases)

hsa05414 Dilated cardiomyopathy Human diseases
(Cardiovascular diseases)

�0.679

hsa05010 Alzheimer’s disease Human diseases
(Neurodegenerative diseases)

hsa05012 Parkinson’s disease Human diseases
(Neurodegenerative diseases)

�0.652

hsa04370 VEGF signaling pathway Environmental information
processing (Signal transduction)

hsa04664 Fc epsilon RI signaling
pathway

Organismal systems
(Immune system)

�0.639

hsa05320 Autoimmune thyroid disease Human diseases (Immune
diseases)

hsa05332 Graft-versus-host disease Human diseases (Immune
diseases)

�0.635

hsa00230 Purine metabolism Metabolism (Nucleotide
metabolism)

hsa00240 Pyrimidine metabolism Metabolism (Nucleotide
metabolism)

�0.623

hsa04713 Circadian entrainment Organismal systems
(Environmental adaptation)

hsa04723 Retrograde endocannabinoid
signaling

Organismal systems
(Nervous system)

�0.618

hsa04911 Insulin secretion Organismal systems (Endocrine
system)

hsa04925 Aldosterone synthesis and
secretion

Organismal systems
(Endocrine system)

�0.608

* The sub-category of the pathway is included in the parentheses.
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MEK-ERK’ signaling pathway has been demonstrated to contribute
the acquired resistance of PLX4032, a selective BRAF inhibitor in
melanoma therapeutic [50].

Thus, the pathway separation value D, could be a useful mea-
surement of the relationship between pathways.
3.3. The relationships among pathways involved in Parkinson’s disease

3.3.1. Pathway enrichment analysis in PDglist
Identifying biological pathways enriched in the candidate genes

may provide meaningful information to give insight on the molec-
ular mechanism underlying Parkinson’s disease. We identified the
significantly enriched pathways in the PDglist by ToppGene and
found 79 significant enrichment pathways with FDR < 0.01 (Sup-
plementary Table 1). The top 20 significantly pathways were
shown in Table 4. Among these pathways, several pathways asso-
ciated with human diseases were included, including neurodegen-
erative diseases, infectious diseases, immune diseases, as well as
endocrine and metabolic diseases. These results were consistent
with the previous studies; for instance, a case-control study sug-
gests that infection is a risk factor for Parkinson’s disease [51],
and a recent analysis shows that Parkinson’s disease has a closely
correlation with immune diseases such as asthma [52] or inflam-
matory bowel disease [53]. In addition, signal transduction path-
ways, e.g., calcium signaling pathway, PI3K-Akt signaling
pathway, MAPK signaling pathway and HIF-1 signaling pathway
were found to be enriched in PDglist. We also identified
pathways-related to neurotransmitters, such as dopaminergic
synapse, serotonergic synapse, and cholinergic synapse, pathway
playing important roles in various biological processes in the ner-
vous system. Besides, immune system- and endocrine system-
related pathways, such as the T cell receptor signaling pathway,
chemokine signaling pathway, estrogen signaling pathway, were
enriched in PDglist, which were consistent with available results
[34]. Further, pathways related to transport and catabolism such
as apoptosis and focal adhesion were found to be enriched in the
PDglist, suggesting that programmed cellular death were critical
in the etiology and pathological process of Parkinson’s disease, in
line with prior knowledge [54]. In summary, as a complex disease,
the occurrence and development of Parkinson’s disease are accom-
panied by several dysfunctional pathways, mainly including path-
ways associated with immune, endocrine and metabolic,
neurodevelopment, infectious and cellular processes. Of note, the
pathway enrichment analysis results also provided some explana-
tions to the comorbidity of PD and other diseases.
3.3.2. The relationships among PD-related pathways
Then, the relationships among the enriched pathways were fur-

ther evaluated. By calculating the separation value of PD-related
enriched pathways in the human PPI network, the pathway pairs
with significantly close relationships were obtained (Table 5).
Among the pathway pairs with the smallest D values (20 pairs),



Table 4
Pathways enriched in the Parkinson’s diseases-related genes (PDglist) (Top 20 pathways).

Pathway
ID

Pathway Name p-value FDR Genes in PDglist included in the pathway

hsa05012 Parkinson’s disease 4.48 � 10�25 1.19 � 10�22 APAF1, CASP3, CASP9, GPR37, HTRA2, LRRK2, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3,
MT-CYB, MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND5, MT-ND6, NDUFA1, NDUFA10, NDUFA6,
NDUFA7, NDUFA8, NDUFB4, NDUFB7, NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS4, NDUFS7,
NDUFS8, NDUFV2, PARK2, PARK7, PINK1, SLC18A2, SLC6A3, SNCA, SNCAIP, TH, UBE2L3, UCHL1,
UQCRH

hsa05010 Alzheimer’s disease 3.27 � 10�20 4.35 � 10�18 APAF1, APOE, BAD, CAPN2, CASP3, CASP8, CASP9, CDK5R1, GRIN1, GRIN2A, GRIN2B, GSK3B, IDE,
IL1B, LRP1, MAPT, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, NDUFA1, NDUFA10,
NDUFA6, NDUFA7, NDUFA8, NDUFB4, NDUFB7, NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS4,
NDUFS7, NDUFS8, NDUFV2, NOS1, PLCB4, PPP3CA, SNCA, TNF, TNFRSF1A, UQCRH

hsa04932 Non-alcoholic fatty liver
disease (NAFLD)

1.15 � 10�18 1.02 � 10�16 AKT1, BAX, CASP3, CASP8, CDC42, CXCL8, CYP2E1, GSK3B, IL1A, IL1B, IL6, INS, JUN, MT-CO1, MT-
CO2, MT-CO3, MT-CYB, NDUFA1, NDUFA10, NDUFA6, NDUFA7, NDUFA8, NDUFB4, NDUFB7,
NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS4, NDUFS7, NDUFS8, NDUFV2, NFKB1, PIK3R3,
PRKAA2, SREBF1, TGFB1, TNF, TNFRSF1A, UQCRH

hsa05152 Tuberculosis 7.47 � 10�15 4.97 � 10�13 AKT1, APAF1, ATP6V0B, BAD, BAX, BCL2, CASP3, CASP8, CASP9, CD14, CR1, CREB1, CTSD, HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HSPA9, IFNG, IFNGR2, IL10, IL18,
IL1A, IL1B, IL6, ITGB2, LAMP1, NFKB1, NFYC, NOD2, NOS2, PPP3CA, TGFB1, TGFB2, TNF,
TNFRSF1A, VDR

hsa05016 Huntington’s disease 4.88 � 10�14 2.60 � 10�12 APAF1, BAX, BDNF, CASP3, CASP8, CASP9, CREB1, DCTN1, GRIN1, GRIN2B, MT-ATP6, MT-ATP8,
MT-CO1, MT-CO2, MT-CO3, MT-CYB, NDUFA1, NDUFA10, NDUFA6, NDUFA7, NDUFA8, NDUFB4,
NDUFB7, NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS4, NDUFS7, NDUFS8, NDUFV2, PLCB4,
PPARGC1A, RCOR1, SOD2, TBP, TFAM, UQCRH

hsa05323 Rheumatoid arthritis 3.66 � 10�13 1.62 � 10�11 ATP6V0B, CCL2, CCL5, CTSL, CXCL8, FLT1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-
DRB1, HLA-DRB5, ICAM1, IFNG, IL18, IL1A, IL1B, IL6, ITGB2, JUN, MMP1, MMP3, TGFB1, TGFB2,
TNF, VEGFA

hsa04612 Antigen processing and
presentation

9.92 � 10�13 3.77 � 10�11 B2M, CALR, CANX, CREB1, CTSB, CTSL, HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQA2, HLA-DQB1,
HLA-DRA, HLA-DRB1, HLA-DRB5, HSP90AA1, HSPA1A, HSPA1L, HSPA5, HSPA8, IFNG, NFYC,
PDIA3, TNF

hsa05321 Inflammatory bowel
disease (IBD)

1.28 � 10�12 4.26 � 10�11 HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, IFNG, IFNGR2, IL10, IL18,
IL1A, IL1B, IL2, IL4, IL6, JUN, NFKB1, NOD2, RORA, TGFB1, TGFB2, TNF

hsa05204 Chemical carcinogenesis 4.49 � 10�12 1.33 � 10�10 ADH1B, ADH4, ADH7, ARNT, CHRNA7, CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2C9, CYP2E1,
EPHX1, GSTA4, GSTM1, GSTM3, GSTO1, GSTO2, GSTP1, GSTT1, MGST2, NAT1, NAT2, PTGS2

hsa05145 Toxoplasmosis 8.92 � 10�12 2.37 � 10�10 AKT1, BAD, BCL2, CASP3, CASP8, CASP9, CCR5, GNAI3, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-
DRA, HLA-DRB1, HLA-DRB5, HSPA1A, HSPA1L, HSPA8, IFNG, IFNGR2, IL10, MAP2K6, NFKB1,
NOS2, PIK3R3, TGFB1, TGFB2, TNF, TNFRSF1A

hsa00190 Oxidative
phosphorylation

1.46 � 10�11 3.54 � 10�10 ATP6V0B, MT-ATP6, MT-ATP8, MT-CO1, MT-CO2, MT-CO3, MT-CYB, MT-ND1, MT-ND2, MT-ND3,
MT-ND4, MT-ND5, MT-ND6, NDUFA1, NDUFA10, NDUFA6, NDUFA7, NDUFA8, NDUFB4, NDUFB7,
NDUFB8, NDUFB9, NDUFS1, NDUFS2, NDUFS4, NDUFS7, NDUFS8, NDUFV2, UQCRH

hsa05140 Leishmaniasis 8.88 � 10�11 1.97 � 10�9 CR1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, IFNG, IFNGR2, IL10,
IL1A, IL1B, IL4, ITGB2, JUN, NFKB1, NOS2, PTGS2, TGFB1, TGFB2, TNF

hsa05030 Cocaine addiction 1.50 � 10�10 3.08 � 10�9 BDNF, CDK5R1, CREB1, DDC, DRD1, DRD2, GNAI3, GRIN1, GRIN2A, GRIN2B, JUN, MAOA, MAOB,
NFKB1, SLC18A2, SLC6A3, TH

hsa05142 Chagas disease
(American
trypanosomiasis)

2.47 � 10�10 4.70 � 10�9 ACE, AKT1, CALR, CASP8, CCL2, CCL5, CXCL8, GNAI3, IFNG, IFNGR2, IL10, IL1B, IL2, IL6, JUN,
NFKB1, NOS2, PIK3R3, PLCB4, PPP2R2B, TGFB1, TGFB2, TNF, TNFRSF1A

hsa05134 Legionellosis 8.22 � 10�10 1.46 � 10�8 APAF1, CASP3, CASP8, CASP9, CD14, CR1, CXCL8, HSPA1A, HSPA1L, HSPA8, IL18, IL1B, IL6, ITGB2,
NFKB1, TNF, VCP

hsa05014 Amyotrophic lateral
sclerosis (ALS)

2.03 � 10�9 3.33 � 10�8 APAF1, BAD, BAX, BCL2, CASP3, CASP9, CAT, GRIN1, GRIN2A, GRIN2B, MAP2K6, NEFL, NOS1,
PPP3CA, TNF, TNFRSF1A

hsa05169 Epstein-Barr virus
infection

2.13 � 10�9 3.33 � 10�8 AKT1, BCL2, BST1, CR2, CSNK2A1, CSNK2A2, CSNK2B, FCER2, GSK3B, HLA-A, HLA-B, HLA-C, HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HSPA1A, HSPA1L, HSPA8,
ICAM1, IFNG, IL10, JUN, MAP2K6, MAP3K14, NFKB1, PIK3R3, PSMC4, SND1, TBP, YWHAH

hsa05332 Graft-versus-host
disease

2.52 � 10�9 3.73 � 10�8 HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5,
IFNG, IL1A, IL1B, IL2, IL6, TNF

hsa05166 HTLV-I infection 3.95 � 10�9 5.53 � 10�8 AKT1, ATR, BAX, CALR, CANX, CDC20, CDC27, CDKN2C, CREB1, CREM, GSK3B, HLA-A, HLA-B, HLA-
C, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, ICAM1, IL2, IL2RA, IL6,
ITGB2, JUN, MAP3K14, MRAS, NFKB1, PIK3R3, PPP3CA, RRAS2, TBP, TGFB1, TGFB2, TNF,
TNFRSF1A, WNT3

hsa00982 Drug metabolism-
cytochrome P450

4.25 � 10�9 5.66 � 10�8 ADH1B, ADH4, ADH7, CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP2E1, GSTA4, GSTM1, GSTM3,
GSTO1, GSTO2, GSTP1, GSTT1, MAOA, MAOB, MGST2
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8 pairs were involved in neurodegenerative diseases, which were
in line with the knowledge on the pathology of PD. Based on their
D values, the pathway pairs were linked to construct a PD-related
pathway network, which included 61 enriched nodes (pathways)
and 311 edges (pathway pairs) (Fig. 2). According to its topological
structure, the PD-related pathways network could be roughly
divided into four major modules, each of which included pathways
had closer relationships compared with other pathways and might
likely be participated in the same or similar biological process. The
first module mainly consisted of pathways associated with neu-
rodegenerative diseases, including pathways like Parkinson’s dis-
ease, Alzheimer’s disease and Huntington’s disease. Of note, as a
pathway related to energy metabolism, oxidative phosphorylation
has closely relationships with neurodegenerative diseases’ path-
ways. This result was consistent with previous reports that oxida-
tive stress had an ubiquitous role in neurodegenerative diseases
[55]. The second module was primarily composed of
neurodevelopment-related signaling pathways, such as dopamin-
ergic synapse, serotonergic synapse, cholinergic synapse and sub-
stance dependence related pathways. The third module was
dominated by pathways associated with immune diseases includ-
ing asthma, autoimmune thyroid disease and rheumatoid arthritis.



Table 5
Parkinson’s disease-related pathway pairs with close relationships (top 20 pathway pairs).

Pathway A Pathway B DAB

KEGG ID Name KEGG ID Name

hsa05320 Autoimmune thyroid disease hsa05330 Allograft rejection �0.869
hsa05330 Allograft rejection hsa05332 Graft-versus-host disease �0.834
hsa04940 Type I diabetes mellitus hsa05332 Graft-versus-host disease �0.833
hsa04940 Type I diabetes mellitus hsa05330 Allograft rejection �0.824
hsa00190 Oxidative phosphorylation hsa05012 Parkinson’s disease �0.757
hsa05030 Cocaine addiction hsa05031 Amphetamine addiction �0.712
hsa05010 Alzheimer’s disease hsa05012 Parkinson’s disease �0.652
hsa05320 Autoimmune thyroid disease hsa05332 Graft-versus-host disease �0.635
hsa05010 Alzheimer’s disease hsa05016 Huntington’s disease �0.590
hsa05012 Parkinson’s disease hsa05016 Huntington’s disease �0.579
hsa04932 Non-alcoholic fatty liver disease (NAFLD) hsa05010 Alzheimer’s disease �0.576
hsa00190 Oxidative phosphorylation hsa05010 Alzheimer’s disease �0.569
hsa04940 Type I diabetes mellitus hsa05320 Autoimmune thyroid disease �0.555
hsa05210 Colorectal cancer hsa05212 Pancreatic cancer �0.516
hsa04014 Ras signaling pathway hsa04015 Rap1 signaling pathway �0.512
hsa05310 Asthma hsa05330 Allograft rejection �0.506
hsa00190 Oxidative phosphorylation hsa05016 Huntington’s disease �0.505
hsa04932 Non-alcoholic fatty liver disease (NAFLD) hsa05012 Parkinson’s disease �0.480
hsa04728 Dopaminergic synapse hsa05031 Amphetamine addiction �0.473
hsa04725 Cholinergic synapse hsa04915 Estrogen signaling pathway �0.472

Fig. 2. Pathway interaction network of the PD-related pathways. The PD-related pathway pairs with significantly close relationships were linked to construct a PD-related
pathway network, which included 61 enriched nodes (pathways) and 311 edges (pathway pairs). Nodes represent enriched pathways and edges represent closely
relationships between pathways. Node size corresponds to the negative logarithm of FDR for each pathway.
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The forth module was the central and the most complex with com-
prising of pathways associated with multiple systems such as
immune, endocrine and metabolic, transport and catabolism.
Among these central pathways, we found that pathways associated
with signal transduction and cellular processes including T cell
receptor signaling pathway, HIF-1 signaling pathway, MAPK sig-
naling pathway, NF-kappa B signaling pathway and apoptosis, focal
adhesion were the core pathways which connected to other path-
ways with the most frequency, suggesting that these pathways
might play important roles in the development of Parkinson’s dis-
ease. Meanwhile, pathways related to infectious diseases and can-
cers were involved in central module. As mentioned above, several
previous reports pointed out that there was a close relationship
between infection and Parkinson’s disease and infection could be
regarded as a risk factor for PD [51]. These infectious diseases-
related pathways were mainly linked to NF-kappa B signaling



Y. Hu et al. /Methods 131 (2017) 93–103 101
pathway, T cell receptor signaling pathway, NOD-like receptor sig-
naling pathway and apoptosis, implying that infection events
might trigger the dysfunction of immune system and play a role
in the development of PD. Currently, the relationship between PD
and cancer is controversial [56]. Indeed, the pathways associated
with cancer were connected to various systems’ pathways in PD-
related pathway relationship network. Of note, all the modules
were not isolated; instead, the central module was connected with
the other three periphery modules via a couple of pathways. Such
results could shed new light on the molecular mechanism underly-
ing this disease and provide meaningful information on predicting
the novel molecular targets that may be important in the etiology
and development of the disease.

For a comparison, we also performed pathway crosstalk analy-
sis on the same set of pathways significantly enriched in PDglist.
Crosstalk scores among 78 enriched pathways containing 5 or
more genes (79 significantly enriched pathways in total) in PDglist
were calculated. There were a total of 1206 connections meeting
the crosstalk criteria between any two of these pathways. We then
ranked the pathway pairs according to their crosstalk scores and 20
pathway pairs with high crosstalk scores were shown in Table 6.
Compared with the pathways pairs with close relationship defined
by our method (Table 5), there were five pathway pairs detected by
both two methods, i.e., oxidative phosphorylation and Parkinson’s
disease, cocaine addiction and amphetamine addiction, type I dia-
betes mellitus and autoimmune thyroid disease, asthma and allo-
graft rejection, and type I diabetes mellitus and allograft
rejection. However, for eleven of the twenty pathway pairs
detected by the new method, one or both pathways were neuronal
function or neuronal disease related, while only two pathway pairs
by crosstalk analysis were neuronal function or neuronal disease
related (Tables 5 and 6). Considering that PD is mainly a neuronal
disorder, such result suggests the pathway relationships identified
by the new method may be more reasonable.

Since in pathway crosstalk analysis, no stringent criterion was
defined for selecting the significantly connected pathway pairs,
we selected the top 10% pairs arbitrarily [39], which resulted a list
of 120 pathway pairs. With the new method, 311 pathway pairs
with significantly close relationships were identified based on their
D values, of which 63 pathway pairs were shared with the pathway
crosstalk analysis. A close inspection indicated that, compared
with pathway crosstalk analysis, more pathway pairs closely
Table 6
Crosstalk in Parkinson’s disease-related pathways (top 20 pathway pairs).

Pathway A Pathway B

KEGG ID Name KEGG ID

hsa05330 Allograft rejection hsa05320
hsa05332 Graft-versus-host disease hsa04940
hsa05204 Chemical carcinogenesis hsa00980
hsa05330 Allograft rejection hsa05310
hsa05012 Parkinson’s disease hsa00190
hsa05332 Graft-versus-host disease hsa05330
hsa04940 Type I diabetes mellitus hsa05330
hsa00982 Drug metabolism-cytochrome P450 hsa00980
hsa05320 Autoimmune thyroid disease hsa05310
hsa05030 Cocaine addiction hsa05031
hsa05321 Inflammatory bowel disease (IBD) hsa05140
hsa04672 Intestinal immune network for IgA production hsa05310
hsa05140 Leishmaniasis hsa05310
hsa05332 Graft-versus-host disease hsa05320
hsa04940 Type I diabetes mellitus hsa05320
hsa05204 Chemical carcinogenesis hsa00982
hsa05321 Inflammatory bowel disease (IBD) hsa05310
hsa05200 Pathways in cancer hsa05210
hsa05310 Asthma hsa05322
hsa05332 Graft-versus-host disease hsa05168
related to the neurodevelopment or neurological signaling trans-
duction (e.g., serotonergic synapse and dopamine synapse, cholin-
ergic synapse and serotonergic synapse, cholinergic synapse and
dopamine synapse, calcium signaling pathway and dopamine
synapse) were ranked in the top of the list given by the new
method. Additionally, we tested the robustness of the twomethods
by randomly removed 10% and 20% genes from the 79 enriched
pathways and re-calculated the crosstalk scores and separation
values between the pathways. While the pathway pairs with close
relationship were largely consistent for the new method, there was
a more significant disturbance in the result of pathway crosstalk
analysis. Taken together, compared to pathway crosstalk analysis,
the new method based on network-based separation value, could
give more reasonable and robust pathway relationships.

In addition to PD, we also employed our approach on a couple of
other diseases, including nicotine addiction, Alzheimer’s disease,
and ovarian cancer co-occurrence with depression. For ovarian
cancer co-occurrence with depression, 219 differentially expressed
genes in ovarian cancers from patients with high vs. low bio-
behavioral risk profiles were obtained [57]. From these genes, 28
dysregulated pathways were identified by ToppGene. With our
method, 72 pathway pairs with significantly close relationships
were identified, with which a pathway network associated with
ovarian cancer co-occurrence with depression was constructed.
In this network, pathways such as antigen processing and presen-
tation, intestinal immune network for IgA production, as well as
phagosome were at the hub positions, which were consistent with
the available knowledge on this disease.

Undeniably, there are some limitations in this study. Currently,
there are quite several pathway databases available. For instance,
ConsensusPathDB (CPDB; http://cpdb.molgen.mpg.de/) integrates
pathways from 12 pathway databases (e.g., BioCarta, Reactome,
KEGG, and WikiPathways). In the current work, we only calculated
relationships among pathways from KEGG database and pathways
from other databases have not been included. A preliminary eval-
uation indicated that the performance of our method was consis-
tent across different pathway databases. However, a
comprehensive and detailed evaluation is still necessary. Although
KEGG pathways are acceptable for their high accuracy, the less
abundant of pathways is an inherent drawback of KEGG database.
On the other hand, due to the definition of pathways as well as
their relevant genes in different pathway database may be differ-
Crosstalk score

Name

Autoimmune thyroid disease 0.929
Type I diabetes mellitus 0.904
Metabolism of xenobiotics by cytochrome P450 0.826
Asthma 0.821
Oxidative phosphorylation 0.794
Allograft rejection 0.782
Allograft rejection 0.782
Metabolism of xenobiotics by cytochrome P450 0.774
Asthma 0.752
Amphetamine addiction 0.744
Leishmaniasis 0.732
Asthma 0.730
Asthma 0.714
Autoimmune thyroid disease 0.711
Autoimmune thyroid disease 0.711
Drug metabolism-cytochrome P450 0.705
Asthma 0.705
Colorectal cancer 0.684
Systemic lupus erythematosus 0.680
Herpes simplex infection 0.674

http://cpdb.molgen.mpg.de/
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ent, it is still difficult to merge the information in different path-
way database, and the calculation results may be biased [58]. Fur-
ther, although the quantity and quality of PPI data has been greatly
improved, the human PPI network is still far from complete. Also,
due to the limitation of current technology, there may be some
false positives in the PPI data [56]. Such potential biases associated
with human PPI network may affect the performance of the
method and our interpretation of the results.
4. Conclusion

In summary, we proposed to use the distances between genes
within and between pathways to measure the localization charac-
ters of pathways in the human protein-protein interaction network
and to analyze the pathways relationships. It was based on the
observation that genes associated with complex phenotypes can
form observed modules in the human PPI network, and the rela-
tionships between phenotypes can be identified based on their
modular distribution. In our approach, the localization characters
of pathways in the human PPI network were analyzed based on
the largest connected component of each pathway-related sub net-
work. We found that the majority of the pathways had a signifi-
cantly observable module in human PPI network, which made it
possible to detect the relationships among pathways by evaluating
the separation of pathway modules in PPI network. Unlike the
methods depending on the overlap of pathways or the integrity
of the PPI network information, the new method estimates rela-
tionships of pathways through their network modules separation
on the PPI network. Via this method, we can study the correlation
between a disease and the dysregulated pathways by analyzing the
relationships of pathways. Based on the relationship of pathways, a
more comprehensive and systematic view of dysfunctional path-
ways underlying disease can be obtained.

As an application, we analyzed the relationship between path-
ways related to Parkinson’s disease and constructed a PD-related
pathways interaction network. Via such a network, pathways that
may be important in the occurrence and development of PD were
predicted.
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